Bitcoin ABC 0.30.5
P2P Digital Currency
main_impl.h
Go to the documentation of this file.
1/***********************************************************************
2 * Copyright (c) 2018-2020 Andrew Poelstra, Jonas Nick *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
5 ***********************************************************************/
6
7#ifndef SECP256K1_MODULE_SCHNORRSIG_MAIN_H
8#define SECP256K1_MODULE_SCHNORRSIG_MAIN_H
9
10#include "include/secp256k1.h"
12#include "hash.h"
13
14/* Initializes SHA256 with fixed midstate. This midstate was computed by applying
15 * SHA256 to SHA256("BIP0340/nonce")||SHA256("BIP0340/nonce"). */
18 sha->s[0] = 0x46615b35ul;
19 sha->s[1] = 0xf4bfbff7ul;
20 sha->s[2] = 0x9f8dc671ul;
21 sha->s[3] = 0x83627ab3ul;
22 sha->s[4] = 0x60217180ul;
23 sha->s[5] = 0x57358661ul;
24 sha->s[6] = 0x21a29e54ul;
25 sha->s[7] = 0x68b07b4cul;
26
27 sha->bytes = 64;
28}
29
30/* Initializes SHA256 with fixed midstate. This midstate was computed by applying
31 * SHA256 to SHA256("BIP0340/aux")||SHA256("BIP0340/aux"). */
34 sha->s[0] = 0x24dd3219ul;
35 sha->s[1] = 0x4eba7e70ul;
36 sha->s[2] = 0xca0fabb9ul;
37 sha->s[3] = 0x0fa3166dul;
38 sha->s[4] = 0x3afbe4b1ul;
39 sha->s[5] = 0x4c44df97ul;
40 sha->s[6] = 0x4aac2739ul;
41 sha->s[7] = 0x249e850aul;
42
43 sha->bytes = 64;
44}
45
46/* algo argument for nonce_function_bip340 to derive the nonce exactly as stated in BIP-340
47 * by using the correct tagged hash function. */
48static const unsigned char bip340_algo[13] = "BIP0340/nonce";
49
51
52static int nonce_function_bip340(unsigned char *nonce32, const unsigned char *msg, size_t msglen, const unsigned char *key32, const unsigned char *xonly_pk32, const unsigned char *algo, size_t algolen, void *data) {
54 unsigned char masked_key[32];
55 int i;
56
57 if (algo == NULL) {
58 return 0;
59 }
60
61 if (data != NULL) {
63 secp256k1_sha256_write(&sha, data, 32);
64 secp256k1_sha256_finalize(&sha, masked_key);
65 for (i = 0; i < 32; i++) {
66 masked_key[i] ^= key32[i];
67 }
68 }
69
70 /* Tag the hash with algo which is important to avoid nonce reuse across
71 * algorithms. If this nonce function is used in BIP-340 signing as defined
72 * in the spec, an optimized tagging implementation is used. */
73 if (algolen == sizeof(bip340_algo)
74 && secp256k1_memcmp_var(algo, bip340_algo, algolen) == 0) {
76 } else {
77 secp256k1_sha256_initialize_tagged(&sha, algo, algolen);
78 }
79
80 /* Hash (masked-)key||pk||msg using the tagged hash as per the spec */
81 if (data != NULL) {
82 secp256k1_sha256_write(&sha, masked_key, 32);
83 } else {
84 secp256k1_sha256_write(&sha, key32, 32);
85 }
86 secp256k1_sha256_write(&sha, xonly_pk32, 32);
87 secp256k1_sha256_write(&sha, msg, msglen);
88 secp256k1_sha256_finalize(&sha, nonce32);
89 return 1;
90}
91
93
94/* Initializes SHA256 with fixed midstate. This midstate was computed by applying
95 * SHA256 to SHA256("BIP0340/challenge")||SHA256("BIP0340/challenge"). */
98 sha->s[0] = 0x9cecba11ul;
99 sha->s[1] = 0x23925381ul;
100 sha->s[2] = 0x11679112ul;
101 sha->s[3] = 0xd1627e0ful;
102 sha->s[4] = 0x97c87550ul;
103 sha->s[5] = 0x003cc765ul;
104 sha->s[6] = 0x90f61164ul;
105 sha->s[7] = 0x33e9b66aul;
106 sha->bytes = 64;
107}
108
109static void secp256k1_schnorrsig_challenge(secp256k1_scalar* e, const unsigned char *r32, const unsigned char *msg, size_t msglen, const unsigned char *pubkey32)
110{
111 unsigned char buf[32];
113
114 /* tagged hash(r.x, pk.x, msg) */
116 secp256k1_sha256_write(&sha, r32, 32);
117 secp256k1_sha256_write(&sha, pubkey32, 32);
118 secp256k1_sha256_write(&sha, msg, msglen);
119 secp256k1_sha256_finalize(&sha, buf);
120 /* Set scalar e to the challenge hash modulo the curve order as per
121 * BIP340. */
122 secp256k1_scalar_set_b32(e, buf, NULL);
123}
124
125int secp256k1_schnorrsig_sign_internal(const secp256k1_context* ctx, unsigned char *sig64, const unsigned char *msg, size_t msglen, const secp256k1_keypair *keypair, secp256k1_nonce_function_hardened noncefp, void *ndata) {
129 secp256k1_gej rj;
130 secp256k1_ge pk;
131 secp256k1_ge r;
132 unsigned char buf[32] = { 0 };
133 unsigned char pk_buf[32];
134 unsigned char seckey[32];
135 int ret = 1;
136
137 VERIFY_CHECK(ctx != NULL);
139 ARG_CHECK(sig64 != NULL);
140 ARG_CHECK(msg != NULL || msglen == 0);
141 ARG_CHECK(keypair != NULL);
142
143 if (noncefp == NULL) {
145 }
146
147 ret &= secp256k1_keypair_load(ctx, &sk, &pk, keypair);
148 /* Because we are signing for a x-only pubkey, the secret key is negated
149 * before signing if the point corresponding to the secret key does not
150 * have an even Y. */
151 if (secp256k1_fe_is_odd(&pk.y)) {
152 secp256k1_scalar_negate(&sk, &sk);
153 }
154
155 secp256k1_scalar_get_b32(seckey, &sk);
156 secp256k1_fe_get_b32(pk_buf, &pk.x);
157 ret &= !!noncefp(buf, msg, msglen, seckey, pk_buf, bip340_algo, sizeof(bip340_algo), ndata);
158 secp256k1_scalar_set_b32(&k, buf, NULL);
159 ret &= !secp256k1_scalar_is_zero(&k);
161
163 secp256k1_ge_set_gej(&r, &rj);
164
165 /* We declassify r to allow using it as a branch point. This is fine
166 * because r is not a secret. */
167 secp256k1_declassify(ctx, &r, sizeof(r));
169 if (secp256k1_fe_is_odd(&r.y)) {
171 }
173 secp256k1_fe_get_b32(&sig64[0], &r.x);
174
175 secp256k1_schnorrsig_challenge(&e, &sig64[0], msg, msglen, pk_buf);
176 secp256k1_scalar_mul(&e, &e, &sk);
177 secp256k1_scalar_add(&e, &e, &k);
178 secp256k1_scalar_get_b32(&sig64[32], &e);
179
180 secp256k1_memczero(sig64, 64, !ret);
183 memset(seckey, 0, sizeof(seckey));
184
185 return ret;
186}
187
188int secp256k1_schnorrsig_sign(const secp256k1_context* ctx, unsigned char *sig64, const unsigned char *msg32, const secp256k1_keypair *keypair, unsigned char *aux_rand32) {
189 return secp256k1_schnorrsig_sign_internal(ctx, sig64, msg32, 32, keypair, secp256k1_nonce_function_bip340, aux_rand32);
190}
191
192int secp256k1_schnorrsig_sign_custom(const secp256k1_context* ctx, unsigned char *sig64, const unsigned char *msg, size_t msglen, const secp256k1_keypair *keypair, secp256k1_schnorrsig_extraparams *extraparams) {
194 void *ndata = NULL;
195 VERIFY_CHECK(ctx != NULL);
196
197 if (extraparams != NULL) {
200 sizeof(extraparams->magic)) == 0);
201 noncefp = extraparams->noncefp;
202 ndata = extraparams->ndata;
203 }
204 return secp256k1_schnorrsig_sign_internal(ctx, sig64, msg, msglen, keypair, noncefp, ndata);
205}
206
207int secp256k1_schnorrsig_verify(const secp256k1_context* ctx, const unsigned char *sig64, const unsigned char *msg, size_t msglen, const secp256k1_xonly_pubkey *pubkey) {
210 secp256k1_gej rj;
211 secp256k1_ge pk;
212 secp256k1_gej pkj;
213 secp256k1_fe rx;
214 secp256k1_ge r;
215 unsigned char buf[32];
216 int overflow;
217
218 VERIFY_CHECK(ctx != NULL);
220 ARG_CHECK(sig64 != NULL);
221 ARG_CHECK(msg != NULL || msglen == 0);
222 ARG_CHECK(pubkey != NULL);
223
224 if (!secp256k1_fe_set_b32(&rx, &sig64[0])) {
225 return 0;
226 }
227
228 secp256k1_scalar_set_b32(&s, &sig64[32], &overflow);
229 if (overflow) {
230 return 0;
231 }
232
233 if (!secp256k1_xonly_pubkey_load(ctx, &pk, pubkey)) {
234 return 0;
235 }
236
237 /* Compute e. */
238 secp256k1_fe_get_b32(buf, &pk.x);
239 secp256k1_schnorrsig_challenge(&e, &sig64[0], msg, msglen, buf);
240
241 /* Compute rj = s*G + (-e)*pkj */
243 secp256k1_gej_set_ge(&pkj, &pk);
244 secp256k1_ecmult(&ctx->ecmult_ctx, &rj, &pkj, &e, &s);
245
247 if (secp256k1_ge_is_infinity(&r)) {
248 return 0;
249 }
250
252 return !secp256k1_fe_is_odd(&r.y) &&
253 secp256k1_fe_equal_var(&rx, &r.x);
254}
255
256#endif
secp256k1_context * ctx
static int secp256k1_ecmult_context_is_built(const secp256k1_ecmult_context *ctx)
static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng)
Double multiply: R = na*A + ng*G.
static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context *ctx, secp256k1_gej *r, const secp256k1_scalar *a)
Multiply with the generator: R = a*G.
static int secp256k1_ecmult_gen_context_is_built(const secp256k1_ecmult_gen_context *ctx)
static int secp256k1_keypair_load(const secp256k1_context *ctx, secp256k1_scalar *sk, secp256k1_ge *pk, const secp256k1_keypair *keypair)
Definition: main_impl.h:177
static SECP256K1_INLINE int secp256k1_xonly_pubkey_load(const secp256k1_context *ctx, secp256k1_ge *ge, const secp256k1_xonly_pubkey *pubkey)
Definition: main_impl.h:13
static int secp256k1_fe_equal_var(const secp256k1_fe *a, const secp256k1_fe *b)
Same as secp256k1_fe_equal, but may be variable time.
static void secp256k1_fe_normalize_var(secp256k1_fe *r)
Normalize a field element, without constant-time guarantee.
static int secp256k1_fe_is_odd(const secp256k1_fe *a)
Check the "oddness" of a field element.
static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a)
Set a field element equal to 32-byte big endian value.
static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a)
Convert a field element to a 32-byte big endian value.
static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a)
Set a group element equal to another which is given in jacobian coordinates.
static int secp256k1_ge_is_infinity(const secp256k1_ge *a)
Check whether a group element is the point at infinity.
static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a)
Set a group element (jacobian) equal to another which is given in affine coordinates.
static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a)
Set a group element equal to another which is given in jacobian coordinates.
static void secp256k1_sha256_initialize_tagged(secp256k1_sha256 *hash, const unsigned char *tag, size_t taglen)
Definition: hash_impl.h:169
static void secp256k1_scalar_cmov(secp256k1_scalar *r, const secp256k1_scalar *a, int flag)
If flag is true, set *r equal to *a; otherwise leave it.
static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *bin, int *overflow)
Set a scalar from a big endian byte array.
static int secp256k1_scalar_is_zero(const secp256k1_scalar *a)
Check whether a scalar equals zero.
static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar *a)
Convert a scalar to a byte array.
static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
Add two scalars together (modulo the group order).
static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
Multiply two scalars (modulo the group order).
static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a)
Compute the complement of a scalar (modulo the group order).
static void secp256k1_scalar_clear(secp256k1_scalar *r)
Clear a scalar to prevent the leak of sensitive data.
static const secp256k1_scalar secp256k1_scalar_one
Definition: scalar_impl.h:31
static void secp256k1_schnorrsig_challenge(secp256k1_scalar *e, const unsigned char *r32, const unsigned char *msg, size_t msglen, const unsigned char *pubkey32)
Definition: main_impl.h:109
static int nonce_function_bip340(unsigned char *nonce32, const unsigned char *msg, size_t msglen, const unsigned char *key32, const unsigned char *xonly_pk32, const unsigned char *algo, size_t algolen, void *data)
Definition: main_impl.h:52
static const unsigned char schnorrsig_extraparams_magic[4]
Definition: main_impl.h:50
static void secp256k1_nonce_function_bip340_sha256_tagged_aux(secp256k1_sha256 *sha)
Definition: main_impl.h:32
static void secp256k1_nonce_function_bip340_sha256_tagged(secp256k1_sha256 *sha)
Definition: main_impl.h:16
static void secp256k1_schnorrsig_sha256_tagged(secp256k1_sha256 *sha)
Definition: main_impl.h:96
int secp256k1_schnorrsig_sign_custom(const secp256k1_context *ctx, unsigned char *sig64, const unsigned char *msg, size_t msglen, const secp256k1_keypair *keypair, secp256k1_schnorrsig_extraparams *extraparams)
Create a Schnorr signature with a more flexible API.
Definition: main_impl.h:192
int secp256k1_schnorrsig_sign_internal(const secp256k1_context *ctx, unsigned char *sig64, const unsigned char *msg, size_t msglen, const secp256k1_keypair *keypair, secp256k1_nonce_function_hardened noncefp, void *ndata)
Definition: main_impl.h:125
int secp256k1_schnorrsig_sign(const secp256k1_context *ctx, unsigned char *sig64, const unsigned char *msg32, const secp256k1_keypair *keypair, unsigned char *aux_rand32)
Create a Schnorr signature.
Definition: main_impl.h:188
static const unsigned char bip340_algo[13]
Definition: main_impl.h:48
const secp256k1_nonce_function_hardened secp256k1_nonce_function_bip340
An implementation of the nonce generation function as defined in Bitcoin Improvement Proposal 340 "Sc...
Definition: main_impl.h:92
int secp256k1_schnorrsig_verify(const secp256k1_context *ctx, const unsigned char *sig64, const unsigned char *msg, size_t msglen, const secp256k1_xonly_pubkey *pubkey)
Verify a Schnorr signature.
Definition: main_impl.h:207
static void secp256k1_sha256_initialize(secp256k1_sha256 *hash)
static void secp256k1_sha256_finalize(secp256k1_sha256 *hash, unsigned char *out32)
static void secp256k1_sha256_write(secp256k1_sha256 *hash, const unsigned char *data, size_t size)
static SECP256K1_INLINE int secp256k1_memcmp_var(const void *s1, const void *s2, size_t n)
Semantics like memcmp.
Definition: util.h:224
#define VERIFY_CHECK(cond)
Definition: util.h:68
static SECP256K1_INLINE void secp256k1_memczero(void *s, size_t len, int flag)
Definition: util.h:205
#define ARG_CHECK(cond)
Definition: secp256k1.c:28
static SECP256K1_INLINE void secp256k1_declassify(const secp256k1_context *ctx, const void *p, size_t len)
Definition: secp256k1.c:235
#define SECP256K1_SCHNORRSIG_EXTRAPARAMS_MAGIC
int(* secp256k1_nonce_function_hardened)(unsigned char *nonce32, const unsigned char *msg, size_t msglen, const unsigned char *key32, const unsigned char *xonly_pk32, const unsigned char *algo, size_t algolen, void *data)
This module implements a variant of Schnorr signatures compliant with Bitcoin Improvement Proposal 34...
secp256k1_ecmult_gen_context ecmult_gen_ctx
Definition: secp256k1.c:71
secp256k1_ecmult_context ecmult_ctx
Definition: secp256k1.c:70
A group element of the secp256k1 curve, in affine coordinates.
Definition: group.h:13
secp256k1_fe x
Definition: group.h:14
secp256k1_fe y
Definition: group.h:15
A group element of the secp256k1 curve, in jacobian coordinates.
Definition: group.h:23
Opaque data structure that holds a keypair consisting of a secret and a public key.
A scalar modulo the group order of the secp256k1 curve.
Definition: scalar_4x64.h:13
Data structure that contains additional arguments for schnorrsig_sign_custom.
secp256k1_nonce_function_hardened noncefp
size_t bytes
Definition: hash.h:16
uint32_t s[8]
Definition: hash.h:14
Opaque data structure that holds a parsed and valid "x-only" public key.