Bitcoin ABC 0.32.8
P2P Digital Currency
scalar_impl.h
Go to the documentation of this file.
1/***********************************************************************
2 * Copyright (c) 2014 Pieter Wuille *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
5 ***********************************************************************/
6
7#ifndef SECP256K1_SCALAR_IMPL_H
8#define SECP256K1_SCALAR_IMPL_H
9
10#ifdef VERIFY
11#include <string.h>
12#endif
13
14#include "scalar.h"
15#include "util.h"
16
17#if defined HAVE_CONFIG_H
18#include "libsecp256k1-config.h"
19#endif
20
21#if defined(EXHAUSTIVE_TEST_ORDER)
22#include "scalar_low_impl.h"
23#elif defined(SECP256K1_WIDEMUL_INT128)
24#include "scalar_4x64_impl.h"
25#elif defined(SECP256K1_WIDEMUL_INT64)
26#include "scalar_8x32_impl.h"
27#else
28#error "Please select wide multiplication implementation"
29#endif
30
31static const secp256k1_scalar secp256k1_scalar_one = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 1);
32static const secp256k1_scalar secp256k1_scalar_zero = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0);
33
34static int secp256k1_scalar_set_b32_seckey(secp256k1_scalar *r, const unsigned char *bin) {
35 int overflow;
36 secp256k1_scalar_set_b32(r, bin, &overflow);
37 return (!overflow) & (!secp256k1_scalar_is_zero(r));
38}
39
40/* These parameters are generated using sage/gen_exhaustive_groups.sage. */
41#if defined(EXHAUSTIVE_TEST_ORDER)
42# if EXHAUSTIVE_TEST_ORDER == 13
43# define EXHAUSTIVE_TEST_LAMBDA 9
44# elif EXHAUSTIVE_TEST_ORDER == 199
45# define EXHAUSTIVE_TEST_LAMBDA 92
46# else
47# error No known lambda for the specified exhaustive test group order.
48# endif
49
57 VERIFY_CHECK(r1 != k);
58 VERIFY_CHECK(r2 != k);
59 VERIFY_CHECK(r1 != r2);
60 *r2 = (*k + 5) % EXHAUSTIVE_TEST_ORDER;
61 *r1 = (*k + (EXHAUSTIVE_TEST_ORDER - *r2) * EXHAUSTIVE_TEST_LAMBDA) % EXHAUSTIVE_TEST_ORDER;
62}
63#else
68 0x5363AD4CUL, 0xC05C30E0UL, 0xA5261C02UL, 0x8812645AUL,
69 0x122E22EAUL, 0x20816678UL, 0xDF02967CUL, 0x1B23BD72UL
70);
71
72#ifdef VERIFY
73static void secp256k1_scalar_split_lambda_verify(const secp256k1_scalar *r1, const secp256k1_scalar *r2, const secp256k1_scalar *k);
74#endif
75
76/*
77 * Both lambda and beta are primitive cube roots of unity. That is lamba^3 == 1 mod n and
78 * beta^3 == 1 mod p, where n is the curve order and p is the field order.
79 *
80 * Furthermore, because (X^3 - 1) = (X - 1)(X^2 + X + 1), the primitive cube roots of unity are
81 * roots of X^2 + X + 1. Therefore lambda^2 + lamba == -1 mod n and beta^2 + beta == -1 mod p.
82 * (The other primitive cube roots of unity are lambda^2 and beta^2 respectively.)
83 *
84 * Let l = -1/2 + i*sqrt(3)/2, the complex root of X^2 + X + 1. We can define a ring
85 * homomorphism phi : Z[l] -> Z_n where phi(a + b*l) == a + b*lambda mod n. The kernel of phi
86 * is a lattice over Z[l] (considering Z[l] as a Z-module). This lattice is generated by a
87 * reduced basis {a1 + b1*l, a2 + b2*l} where
88 *
89 * - a1 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15}
90 * - b1 = -{0xe4,0x43,0x7e,0xd6,0x01,0x0e,0x88,0x28,0x6f,0x54,0x7f,0xa9,0x0a,0xbf,0xe4,0xc3}
91 * - a2 = {0x01,0x14,0xca,0x50,0xf7,0xa8,0xe2,0xf3,0xf6,0x57,0xc1,0x10,0x8d,0x9d,0x44,0xcf,0xd8}
92 * - b2 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15}
93 *
94 * "Guide to Elliptic Curve Cryptography" (Hankerson, Menezes, Vanstone) gives an algorithm
95 * (algorithm 3.74) to find k1 and k2 given k, such that k1 + k2 * lambda == k mod n, and k1
96 * and k2 are small in absolute value.
97 *
98 * The algorithm computes c1 = round(b2 * k / n) and c2 = round((-b1) * k / n), and gives
99 * k1 = k - (c1*a1 + c2*a2) and k2 = -(c1*b1 + c2*b2). Instead, we use modular arithmetic, and
100 * compute r2 = k2 mod n, and r1 = k1 mod n = (k - r2 * lambda) mod n, avoiding the need for
101 * the constants a1 and a2.
102 *
103 * g1, g2 are precomputed constants used to replace division with a rounded multiplication
104 * when decomposing the scalar for an endomorphism-based point multiplication.
105 *
106 * The possibility of using precomputed estimates is mentioned in "Guide to Elliptic Curve
107 * Cryptography" (Hankerson, Menezes, Vanstone) in section 3.5.
108 *
109 * The derivation is described in the paper "Efficient Software Implementation of Public-Key
110 * Cryptography on Sensor Networks Using the MSP430X Microcontroller" (Gouvea, Oliveira, Lopez),
111 * Section 4.3 (here we use a somewhat higher-precision estimate):
112 * d = a1*b2 - b1*a2
113 * g1 = round(2^384 * b2/d)
114 * g2 = round(2^384 * (-b1)/d)
115 *
116 * (Note that d is also equal to the curve order, n, here because [a1,b1] and [a2,b2]
117 * can be found as outputs of the Extended Euclidean Algorithm on inputs n and lambda).
118 *
119 * The function below splits k into r1 and r2, such that
120 * - r1 + lambda * r2 == k (mod n)
121 * - either r1 < 2^128 or -r1 mod n < 2^128
122 * - either r2 < 2^128 or -r2 mod n < 2^128
123 *
124 * See proof below.
125 */
127 secp256k1_scalar c1, c2;
128 static const secp256k1_scalar minus_b1 = SECP256K1_SCALAR_CONST(
129 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00000000UL,
130 0xE4437ED6UL, 0x010E8828UL, 0x6F547FA9UL, 0x0ABFE4C3UL
131 );
132 static const secp256k1_scalar minus_b2 = SECP256K1_SCALAR_CONST(
133 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL,
134 0x8A280AC5UL, 0x0774346DUL, 0xD765CDA8UL, 0x3DB1562CUL
135 );
137 0x3086D221UL, 0xA7D46BCDUL, 0xE86C90E4UL, 0x9284EB15UL,
138 0x3DAA8A14UL, 0x71E8CA7FUL, 0xE893209AUL, 0x45DBB031UL
139 );
141 0xE4437ED6UL, 0x010E8828UL, 0x6F547FA9UL, 0x0ABFE4C4UL,
142 0x221208ACUL, 0x9DF506C6UL, 0x1571B4AEUL, 0x8AC47F71UL
143 );
144 VERIFY_CHECK(r1 != k);
145 VERIFY_CHECK(r2 != k);
146 VERIFY_CHECK(r1 != r2);
147 /* these _var calls are constant time since the shift amount is constant */
148 secp256k1_scalar_mul_shift_var(&c1, k, &g1, 384);
149 secp256k1_scalar_mul_shift_var(&c2, k, &g2, 384);
150 secp256k1_scalar_mul(&c1, &c1, &minus_b1);
151 secp256k1_scalar_mul(&c2, &c2, &minus_b2);
152 secp256k1_scalar_add(r2, &c1, &c2);
155 secp256k1_scalar_add(r1, r1, k);
156
157#ifdef VERIFY
158 secp256k1_scalar_split_lambda_verify(r1, r2, k);
159#endif
160}
161
162#ifdef VERIFY
163/*
164 * Proof for secp256k1_scalar_split_lambda's bounds.
165 *
166 * Let
167 * - epsilon1 = 2^256 * |g1/2^384 - b2/d|
168 * - epsilon2 = 2^256 * |g2/2^384 - (-b1)/d|
169 * - c1 = round(k*g1/2^384)
170 * - c2 = round(k*g2/2^384)
171 *
172 * Lemma 1: |c1 - k*b2/d| < 2^-1 + epsilon1
173 *
174 * |c1 - k*b2/d|
175 * =
176 * |c1 - k*g1/2^384 + k*g1/2^384 - k*b2/d|
177 * <= {triangle inequality}
178 * |c1 - k*g1/2^384| + |k*g1/2^384 - k*b2/d|
179 * =
180 * |c1 - k*g1/2^384| + k*|g1/2^384 - b2/d|
181 * < {rounding in c1 and 0 <= k < 2^256}
182 * 2^-1 + 2^256 * |g1/2^384 - b2/d|
183 * = {definition of epsilon1}
184 * 2^-1 + epsilon1
185 *
186 * Lemma 2: |c2 - k*(-b1)/d| < 2^-1 + epsilon2
187 *
188 * |c2 - k*(-b1)/d|
189 * =
190 * |c2 - k*g2/2^384 + k*g2/2^384 - k*(-b1)/d|
191 * <= {triangle inequality}
192 * |c2 - k*g2/2^384| + |k*g2/2^384 - k*(-b1)/d|
193 * =
194 * |c2 - k*g2/2^384| + k*|g2/2^384 - (-b1)/d|
195 * < {rounding in c2 and 0 <= k < 2^256}
196 * 2^-1 + 2^256 * |g2/2^384 - (-b1)/d|
197 * = {definition of epsilon2}
198 * 2^-1 + epsilon2
199 *
200 * Let
201 * - k1 = k - c1*a1 - c2*a2
202 * - k2 = - c1*b1 - c2*b2
203 *
204 * Lemma 3: |k1| < (a1 + a2 + 1)/2 < 2^128
205 *
206 * |k1|
207 * = {definition of k1}
208 * |k - c1*a1 - c2*a2|
209 * = {(a1*b2 - b1*a2)/n = 1}
210 * |k*(a1*b2 - b1*a2)/n - c1*a1 - c2*a2|
211 * =
212 * |a1*(k*b2/n - c1) + a2*(k*(-b1)/n - c2)|
213 * <= {triangle inequality}
214 * a1*|k*b2/n - c1| + a2*|k*(-b1)/n - c2|
215 * < {Lemma 1 and Lemma 2}
216 * a1*(2^-1 + epslion1) + a2*(2^-1 + epsilon2)
217 * < {rounding up to an integer}
218 * (a1 + a2 + 1)/2
219 * < {rounding up to a power of 2}
220 * 2^128
221 *
222 * Lemma 4: |k2| < (-b1 + b2)/2 + 1 < 2^128
223 *
224 * |k2|
225 * = {definition of k2}
226 * |- c1*a1 - c2*a2|
227 * = {(b1*b2 - b1*b2)/n = 0}
228 * |k*(b1*b2 - b1*b2)/n - c1*b1 - c2*b2|
229 * =
230 * |b1*(k*b2/n - c1) + b2*(k*(-b1)/n - c2)|
231 * <= {triangle inequality}
232 * (-b1)*|k*b2/n - c1| + b2*|k*(-b1)/n - c2|
233 * < {Lemma 1 and Lemma 2}
234 * (-b1)*(2^-1 + epslion1) + b2*(2^-1 + epsilon2)
235 * < {rounding up to an integer}
236 * (-b1 + b2)/2 + 1
237 * < {rounding up to a power of 2}
238 * 2^128
239 *
240 * Let
241 * - r2 = k2 mod n
242 * - r1 = k - r2*lambda mod n.
243 *
244 * Notice that r1 is defined such that r1 + r2 * lambda == k (mod n).
245 *
246 * Lemma 5: r1 == k1 mod n.
247 *
248 * r1
249 * == {definition of r1 and r2}
250 * k - k2*lambda
251 * == {definition of k2}
252 * k - (- c1*b1 - c2*b2)*lambda
253 * ==
254 * k + c1*b1*lambda + c2*b2*lambda
255 * == {a1 + b1*lambda == 0 mod n and a2 + b2*lambda == 0 mod n}
256 * k - c1*a1 - c2*a2
257 * == {definition of k1}
258 * k1
259 *
260 * From Lemma 3, Lemma 4, Lemma 5 and the definition of r2, we can conclude that
261 *
262 * - either r1 < 2^128 or -r1 mod n < 2^128
263 * - either r2 < 2^128 or -r2 mod n < 2^128.
264 *
265 * Q.E.D.
266 */
267static void secp256k1_scalar_split_lambda_verify(const secp256k1_scalar *r1, const secp256k1_scalar *r2, const secp256k1_scalar *k) {
269 unsigned char buf1[32];
270 unsigned char buf2[32];
271
272 /* (a1 + a2 + 1)/2 is 0xa2a8918ca85bafe22016d0b917e4dd77 */
273 static const unsigned char k1_bound[32] = {
274 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
275 0xa2, 0xa8, 0x91, 0x8c, 0xa8, 0x5b, 0xaf, 0xe2, 0x20, 0x16, 0xd0, 0xb9, 0x17, 0xe4, 0xdd, 0x77
276 };
277
278 /* (-b1 + b2)/2 + 1 is 0x8a65287bd47179fb2be08846cea267ed */
279 static const unsigned char k2_bound[32] = {
280 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
281 0x8a, 0x65, 0x28, 0x7b, 0xd4, 0x71, 0x79, 0xfb, 0x2b, 0xe0, 0x88, 0x46, 0xce, 0xa2, 0x67, 0xed
282 };
283
285 secp256k1_scalar_add(&s, &s, r1);
287
289 secp256k1_scalar_get_b32(buf1, r1);
290 secp256k1_scalar_get_b32(buf2, &s);
291 VERIFY_CHECK(secp256k1_memcmp_var(buf1, k1_bound, 32) < 0 || secp256k1_memcmp_var(buf2, k1_bound, 32) < 0);
292
294 secp256k1_scalar_get_b32(buf1, r2);
295 secp256k1_scalar_get_b32(buf2, &s);
296 VERIFY_CHECK(secp256k1_memcmp_var(buf1, k2_bound, 32) < 0 || secp256k1_memcmp_var(buf2, k2_bound, 32) < 0);
297}
298#endif /* VERIFY */
299#endif /* !defined(EXHAUSTIVE_TEST_ORDER) */
300
301#endif /* SECP256K1_SCALAR_IMPL_H */
static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *bin, int *overflow)
Set a scalar from a big endian byte array.
static int secp256k1_scalar_is_zero(const secp256k1_scalar *a)
Check whether a scalar equals zero.
static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b)
Compare two scalars.
static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar *a)
Convert a scalar to a byte array.
static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
Add two scalars together (modulo the group order).
static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
Multiply two scalars (modulo the group order).
static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift)
Multiply a and b (without taking the modulus!), divide by 2**shift, and round to the nearest integer.
static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a)
Compute the complement of a scalar (modulo the group order).
#define SECP256K1_SCALAR_CONST(d7, d6, d5, d4, d3, d2, d1, d0)
Definition: scalar_4x64.h:17
static const secp256k1_scalar secp256k1_scalar_zero
Definition: scalar_impl.h:32
static int secp256k1_scalar_set_b32_seckey(secp256k1_scalar *r, const unsigned char *bin)
Definition: scalar_impl.h:34
static const secp256k1_scalar secp256k1_scalar_one
Definition: scalar_impl.h:31
static const secp256k1_scalar secp256k1_const_lambda
The Secp256k1 curve has an endomorphism, where lambda * (x, y) = (beta * x, y), where lambda is:
Definition: scalar_impl.h:67
static void secp256k1_scalar_split_lambda(secp256k1_scalar *SECP256K1_RESTRICT r1, secp256k1_scalar *SECP256K1_RESTRICT r2, const secp256k1_scalar *SECP256K1_RESTRICT k)
Definition: scalar_impl.h:126
static SECP256K1_INLINE int secp256k1_memcmp_var(const void *s1, const void *s2, size_t n)
Semantics like memcmp.
Definition: util.h:201
#define VERIFY_CHECK(cond)
Definition: util.h:100
#define SECP256K1_RESTRICT
Definition: util.h:160
A scalar modulo the group order of the secp256k1 curve.
Definition: scalar_4x64.h:13
#define EXHAUSTIVE_TEST_ORDER