Bitcoin ABC 0.30.5
P2P Digital Currency
group.h
Go to the documentation of this file.
1/***********************************************************************
2 * Copyright (c) 2013, 2014 Pieter Wuille *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
5 ***********************************************************************/
6
7#ifndef SECP256K1_GROUP_H
8#define SECP256K1_GROUP_H
9
10#include "field.h"
11
13typedef struct {
16 int infinity; /* whether this represents the point at infinity */
18
19#define SECP256K1_GE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_CONST((i),(j),(k),(l),(m),(n),(o),(p)), 0}
20#define SECP256K1_GE_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1}
21
23typedef struct {
24 secp256k1_fe x; /* actual X: x/z^2 */
25 secp256k1_fe y; /* actual Y: y/z^3 */
27 int infinity; /* whether this represents the point at infinity */
29
30#define SECP256K1_GEJ_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_CONST((i),(j),(k),(l),(m),(n),(o),(p)), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1), 0}
31#define SECP256K1_GEJ_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1}
32
33typedef struct {
37
38#define SECP256K1_GE_STORAGE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_STORAGE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_STORAGE_CONST((i),(j),(k),(l),(m),(n),(o),(p))}
39
40#define SECP256K1_GE_STORAGE_CONST_GET(t) SECP256K1_FE_STORAGE_CONST_GET(t.x), SECP256K1_FE_STORAGE_CONST_GET(t.y)
41
43static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y);
44
50
53static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd);
54
57
60
62static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a);
63
66
69
71static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len);
72
78static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge *r, secp256k1_fe *globalz, const secp256k1_gej *a, const secp256k1_fe *zr);
79
82
85
88
90static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a);
91
94
97
100
103
106
109
112
117
119static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv);
120
123
126
129
132
135
138
141
152
153#endif /* SECP256K1_GROUP_H */
static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr)
Set r equal to the double of a.
static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv)
Set r equal to the sum of a and b (with the inverse of b's Z coordinate passed as bzinv).
static void secp256k1_gej_clear(secp256k1_gej *r)
Clear a secp256k1_gej to prevent leaking sensitive information.
static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a)
Set r to be equal to lambda times a, where lambda is chosen in a way such that this is very fast.
static void secp256k1_gej_set_infinity(secp256k1_gej *r)
Set a group element (jacobian) equal to the point at infinity.
static int secp256k1_gej_is_infinity(const secp256k1_gej *a)
Check whether a group element is the point at infinity.
static void secp256k1_ge_clear(secp256k1_ge *r)
Clear a secp256k1_ge to prevent leaking sensitive information.
static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y)
Set a group element equal to the point with given X and Y coordinates.
static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd)
Set a group element (affine) equal to the point with the given X coordinate, and given oddness for Y.
static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr)
Set r equal to the sum of a and b (with b given in affine coordinates).
static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge *r, secp256k1_fe *globalz, const secp256k1_gej *a, const secp256k1_fe *zr)
Bring a batch inputs given in jacobian coordinates (with known z-ratios) to the same global z "denomi...
static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b)
Set r equal to the sum of a and b (with b given in affine coordinates, and not infinity).
static int secp256k1_ge_is_valid_var(const secp256k1_ge *a)
Check whether a group element is valid (i.e., on the curve).
static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storage *a)
Convert a group element back from the storage type.
static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr)
Set r equal to the sum of a and b.
static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *b)
Rescale a jacobian point by b which must be non-zero.
static void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag)
If flag is true, set *r equal to *a; otherwise leave it.
static int secp256k1_ge_set_xquad(secp256k1_ge *r, const secp256k1_fe *x)
Set a group element (affine) equal to the point with the given X coordinate and a Y coordinate that i...
static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a)
Compare the X coordinate of a group element (jacobian).
static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a)
Set a group element equal to another which is given in jacobian coordinates.
static int secp256k1_ge_is_in_correct_subgroup(const secp256k1_ge *ge)
Determine if a point (which is assumed to be on the curve) is in the correct (sub)group of the curve.
static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a)
Set r equal to the inverse of a (i.e., mirrored around the X axis)
static int secp256k1_ge_is_infinity(const secp256k1_ge *a)
Check whether a group element is the point at infinity.
static void secp256k1_ge_set_infinity(secp256k1_ge *r)
Set a group element (affine) equal to the point at infinity.
static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len)
Set a batch of group elements equal to the inputs given in jacobian coordinates.
static void secp256k1_gej_double(secp256k1_gej *r, const secp256k1_gej *a)
Set r equal to the double of a.
static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a)
Set a group element (jacobian) equal to another which is given in affine coordinates.
static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge *a)
Convert a group element to the storage type.
static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a)
Set a group element equal to another which is given in jacobian coordinates.
static int secp256k1_gej_has_quad_y_var(const secp256k1_gej *a)
Check whether a group element's y coordinate is a quadratic residue.
static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a)
Set r equal to the inverse of a (i.e., mirrored around the X axis)
secp256k1_fe_storage x
Definition: group.h:34
secp256k1_fe_storage y
Definition: group.h:35
A group element of the secp256k1 curve, in affine coordinates.
Definition: group.h:13
int infinity
Definition: group.h:16
secp256k1_fe x
Definition: group.h:14
secp256k1_fe y
Definition: group.h:15
A group element of the secp256k1 curve, in jacobian coordinates.
Definition: group.h:23
secp256k1_fe y
Definition: group.h:25
secp256k1_fe x
Definition: group.h:24
int infinity
Definition: group.h:27
secp256k1_fe z
Definition: group.h:26