Bitcoin ABC 0.30.9
P2P Digital Currency
bench_ecmult.c
Go to the documentation of this file.
1/***********************************************************************
2 * Copyright (c) 2017 Pieter Wuille *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
5 ***********************************************************************/
6#include <stdio.h>
7
8#include "include/secp256k1.h"
9
10#include "util.h"
11#include "hash_impl.h"
12#include "field_impl.h"
13#include "group_impl.h"
14#include "scalar_impl.h"
15#include "ecmult_impl.h"
16#include "bench.h"
17#include "secp256k1.c"
18
19#define POINTS 32768
20
21typedef struct {
22 /* Setup once in advance */
30
31 /* Changes per test */
32 size_t count;
34
35 /* Changes per test iteration */
36 size_t offset1;
37 size_t offset2;
38
39 /* Test output. */
42
43static int bench_callback(secp256k1_scalar* sc, secp256k1_ge* ge, size_t idx, void* arg) {
44 bench_data* data = (bench_data*)arg;
45 if (data->includes_g) ++idx;
46 if (idx == 0) {
47 *sc = data->scalars[data->offset1];
49 } else {
50 *sc = data->scalars[(data->offset1 + idx) % POINTS];
51 *ge = data->pubkeys[(data->offset2 + idx - 1) % POINTS];
52 }
53 return 1;
54}
55
56static void bench_ecmult(void* arg, int iters) {
57 bench_data* data = (bench_data*)arg;
58
59 int includes_g = data->includes_g;
60 int iter;
61 int count = data->count;
62 iters = iters / data->count;
63
64 for (iter = 0; iter < iters; ++iter) {
65 data->ecmult_multi(&data->ctx->error_callback, &data->ctx->ecmult_ctx, data->scratch, &data->output[iter], data->includes_g ? &data->scalars[data->offset1] : NULL, bench_callback, arg, count - includes_g);
66 data->offset1 = (data->offset1 + count) % POINTS;
67 data->offset2 = (data->offset2 + count - 1) % POINTS;
68 }
69}
70
71static void bench_ecmult_setup(void* arg) {
72 bench_data* data = (bench_data*)arg;
73 data->offset1 = (data->count * 0x537b7f6f + 0x8f66a481) % POINTS;
74 data->offset2 = (data->count * 0x7f6f537b + 0x6a1a8f49) % POINTS;
75}
76
77static void bench_ecmult_teardown(void* arg, int iters) {
78 bench_data* data = (bench_data*)arg;
79 int iter;
80 iters = iters / data->count;
81 /* Verify the results in teardown, to avoid doing comparisons while benchmarking. */
82 for (iter = 0; iter < iters; ++iter) {
83 secp256k1_gej tmp;
84 secp256k1_gej_add_var(&tmp, &data->output[iter], &data->expected_output[iter], NULL);
86 }
87}
88
89static void generate_scalar(uint32_t num, secp256k1_scalar* scalar) {
91 unsigned char c[11] = {'e', 'c', 'm', 'u', 'l', 't', 0, 0, 0, 0};
92 unsigned char buf[32];
93 int overflow = 0;
94 c[6] = num;
95 c[7] = num >> 8;
96 c[8] = num >> 16;
97 c[9] = num >> 24;
99 secp256k1_sha256_write(&sha256, c, sizeof(c));
101 secp256k1_scalar_set_b32(scalar, buf, &overflow);
102 CHECK(!overflow);
103}
104
105static void run_test(bench_data* data, size_t count, int includes_g, int num_iters) {
106 char str[32];
107 static const secp256k1_scalar zero = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0);
108 size_t iters = 1 + num_iters / count;
109 size_t iter;
110
111 data->count = count;
112 data->includes_g = includes_g;
113
114 /* Compute (the negation of) the expected results directly. */
115 data->offset1 = (data->count * 0x537b7f6f + 0x8f66a481) % POINTS;
116 data->offset2 = (data->count * 0x7f6f537b + 0x6a1a8f49) % POINTS;
117 for (iter = 0; iter < iters; ++iter) {
119 secp256k1_scalar total = data->scalars[(data->offset1++) % POINTS];
120 size_t i = 0;
121 for (i = 0; i + 1 < count; ++i) {
122 secp256k1_scalar_mul(&tmp, &data->seckeys[(data->offset2++) % POINTS], &data->scalars[(data->offset1++) % POINTS]);
123 secp256k1_scalar_add(&total, &total, &tmp);
124 }
125 secp256k1_scalar_negate(&total, &total);
126 secp256k1_ecmult(&data->ctx->ecmult_ctx, &data->expected_output[iter], NULL, &zero, &total);
127 }
128
129 /* Run the benchmark. */
130 sprintf(str, includes_g ? "ecmult_%ig" : "ecmult_%i", (int)count);
132}
133
134int main(int argc, char **argv) {
135 bench_data data;
136 int i, p;
137 secp256k1_gej* pubkeys_gej;
138 size_t scratch_size;
139
140 int iters = get_iters(10000);
141
144 data.scratch = secp256k1_scratch_space_create(data.ctx, scratch_size);
146
147 if (argc > 1) {
148 if(have_flag(argc, argv, "pippenger_wnaf")) {
149 printf("Using pippenger_wnaf:\n");
151 } else if(have_flag(argc, argv, "strauss_wnaf")) {
152 printf("Using strauss_wnaf:\n");
154 } else if(have_flag(argc, argv, "simple")) {
155 printf("Using simple algorithm:\n");
158 data.scratch = NULL;
159 } else {
160 fprintf(stderr, "%s: unrecognized argument '%s'.\n", argv[0], argv[1]);
161 fprintf(stderr, "Use 'pippenger_wnaf', 'strauss_wnaf', 'simple' or no argument to benchmark a combined algorithm.\n");
162 return 1;
163 }
164 }
165
166 /* Allocate stuff */
167 data.scalars = malloc(sizeof(secp256k1_scalar) * POINTS);
168 data.seckeys = malloc(sizeof(secp256k1_scalar) * POINTS);
169 data.pubkeys = malloc(sizeof(secp256k1_ge) * POINTS);
170 data.expected_output = malloc(sizeof(secp256k1_gej) * (iters + 1));
171 data.output = malloc(sizeof(secp256k1_gej) * (iters + 1));
172
173 /* Generate a set of scalars, and private/public keypairs. */
174 pubkeys_gej = malloc(sizeof(secp256k1_gej) * POINTS);
177 for (i = 0; i < POINTS; ++i) {
178 generate_scalar(i, &data.scalars[i]);
179 if (i) {
180 secp256k1_gej_double_var(&pubkeys_gej[i], &pubkeys_gej[i - 1], NULL);
181 secp256k1_scalar_add(&data.seckeys[i], &data.seckeys[i - 1], &data.seckeys[i - 1]);
182 }
183 }
184 secp256k1_ge_set_all_gej_var(data.pubkeys, pubkeys_gej, POINTS);
185 free(pubkeys_gej);
186
187 for (i = 1; i <= 8; ++i) {
188 run_test(&data, i, 1, iters);
189 }
190
191 /* This is disabled with low count of iterations because the loop runs 77 times even with iters=1
192 * and the higher it goes the longer the computation takes(more points)
193 * So we don't run this benchmark with low iterations to prevent slow down */
194 if (iters > 2) {
195 for (p = 0; p <= 11; ++p) {
196 for (i = 9; i <= 16; ++i) {
197 run_test(&data, i << p, 1, iters);
198 }
199 }
200 }
201
202 if (data.scratch != NULL) {
204 }
206 free(data.scalars);
207 free(data.pubkeys);
208 free(data.seckeys);
209 free(data.output);
210 free(data.expected_output);
211
212 return(0);
213}
int main(int argc, char **argv)
Definition: bench_ecmult.c:134
static void bench_ecmult_setup(void *arg)
Definition: bench_ecmult.c:71
static void generate_scalar(uint32_t num, secp256k1_scalar *scalar)
Definition: bench_ecmult.c:89
static void bench_ecmult_teardown(void *arg, int iters)
Definition: bench_ecmult.c:77
static void run_test(bench_data *data, size_t count, int includes_g, int num_iters)
Definition: bench_ecmult.c:105
static void bench_ecmult(void *arg, int iters)
Definition: bench_ecmult.c:56
static int bench_callback(secp256k1_scalar *sc, secp256k1_ge *ge, size_t idx, void *arg)
Definition: bench_ecmult.c:43
#define POINTS
Definition: bench_ecmult.c:19
static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng)
Double multiply: R = na*A + ng*G.
static int secp256k1_ecmult_multi_var(const secp256k1_callback *error_callback, const secp256k1_ecmult_context *ctx, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n)
Multi-multiply: R = inp_g_sc * G + sum_i ni * Ai.
#define STRAUSS_SCRATCH_OBJECTS
Definition: ecmult_impl.h:71
static int secp256k1_ecmult_pippenger_batch_single(const secp256k1_callback *error_callback, const secp256k1_ecmult_context *actx, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n)
Definition: ecmult_impl.h:944
static size_t secp256k1_strauss_scratch_size(size_t n_points)
Definition: ecmult_impl.h:577
int(* secp256k1_ecmult_multi_func)(const secp256k1_callback *error_callback, const secp256k1_ecmult_context *, secp256k1_scratch *, secp256k1_gej *, const secp256k1_scalar *, secp256k1_ecmult_multi_callback cb, void *, size_t)
Definition: ecmult_impl.h:1034
static int secp256k1_ecmult_strauss_batch_single(const secp256k1_callback *error_callback, const secp256k1_ecmult_context *actx, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n)
Definition: ecmult_impl.h:621
static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr)
Set r equal to the double of a.
static int secp256k1_gej_is_infinity(const secp256k1_gej *a)
Check whether a group element is the point at infinity.
static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr)
Set r equal to the sum of a and b.
static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len)
Set a batch of group elements equal to the inputs given in jacobian coordinates.
static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a)
Set a group element (jacobian) equal to another which is given in affine coordinates.
static const secp256k1_ge secp256k1_ge_const_g
Generator for secp256k1, value 'g' defined in "Standards for Efficient Cryptography" (SEC2) 2....
Definition: group_impl.h:52
Internal SHA-256 implementation.
Definition: sha256.cpp:40
void printf(const char *fmt, const Args &...args)
Format list of arguments to std::cout, according to the given format string.
Definition: tinyformat.h:1126
static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *bin, int *overflow)
Set a scalar from a big endian byte array.
static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v)
Set a scalar to an unsigned integer.
static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
Add two scalars together (modulo the group order).
static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
Multiply two scalars (modulo the group order).
static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a)
Compute the complement of a scalar (modulo the group order).
#define SECP256K1_SCALAR_CONST(d7, d6, d5, d4, d3, d2, d1, d0)
Definition: scalar_4x64.h:17
int have_flag(int argc, char **argv, char *flag)
Definition: bench.h:109
int get_iters(int default_iters)
Definition: bench.h:124
void run_benchmark(char *name, void(*benchmark)(void *, int), void(*setup)(void *), void(*teardown)(void *, int), void *data, int count, int iter)
Definition: bench.h:76
static void secp256k1_sha256_initialize(secp256k1_sha256 *hash)
static void secp256k1_sha256_finalize(secp256k1_sha256 *hash, unsigned char *out32)
static void secp256k1_sha256_write(secp256k1_sha256 *hash, const unsigned char *data, size_t size)
#define CHECK(cond)
Definition: util.h:53
#define SECP256K1_CONTEXT_SIGN
Definition: secp256k1.h:174
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT secp256k1_scratch_space * secp256k1_scratch_space_create(const secp256k1_context *ctx, size_t size) SECP256K1_ARG_NONNULL(1)
Create a secp256k1 scratch space object.
Definition: secp256k1.c:221
SECP256K1_API secp256k1_context * secp256k1_context_create(unsigned int flags) SECP256K1_WARN_UNUSED_RESULT
Create a secp256k1 context object (in dynamically allocated memory).
Definition: secp256k1.c:152
SECP256K1_API void secp256k1_scratch_space_destroy(const secp256k1_context *ctx, secp256k1_scratch_space *scratch) SECP256K1_ARG_NONNULL(1)
Destroy a secp256k1 scratch space.
Definition: secp256k1.c:226
#define SECP256K1_CONTEXT_VERIFY
Flags to pass to secp256k1_context_create, secp256k1_context_preallocated_size, and secp256k1_context...
Definition: secp256k1.h:173
SECP256K1_API void secp256k1_context_destroy(secp256k1_context *ctx)
Destroy a secp256k1 context object (created in dynamically allocated memory).
Definition: secp256k1.c:196
secp256k1_scalar * seckeys
Definition: bench_ecmult.c:27
secp256k1_gej * output
Definition: bench_ecmult.c:40
size_t offset2
Definition: bench_ecmult.c:37
secp256k1_ecmult_multi_func ecmult_multi
Definition: bench_ecmult.c:29
int includes_g
Definition: bench_ecmult.c:33
size_t offset1
Definition: bench_ecmult.c:36
secp256k1_scratch_space * scratch
Definition: bench_ecmult.c:24
secp256k1_context * ctx
Definition: bench_ecmult.c:23
secp256k1_ge * pubkeys
Definition: bench_ecmult.c:26
size_t count
Definition: bench_ecmult.c:32
secp256k1_scalar * scalars
Definition: bench_ecmult.c:25
secp256k1_gej * expected_output
Definition: bench_ecmult.c:28
secp256k1_callback error_callback
Definition: secp256k1.c:73
secp256k1_ecmult_context ecmult_ctx
Definition: secp256k1.c:70
A group element of the secp256k1 curve, in affine coordinates.
Definition: group.h:13
A group element of the secp256k1 curve, in jacobian coordinates.
Definition: group.h:23
A scalar modulo the group order of the secp256k1 curve.
Definition: scalar_4x64.h:13
static int count
Definition: tests.c:31