62 iters = iters / data->
count;
64 for (iter = 0; iter < iters; ++iter) {
80 iters = iters / data->
count;
82 for (iter = 0; iter < iters; ++iter) {
91 unsigned char c[11] = {
'e',
'c',
'm',
'u',
'l',
't', 0, 0, 0, 0};
92 unsigned char buf[32];
108 size_t iters = 1 + num_iters /
count;
117 for (iter = 0; iter < iters; ++iter) {
121 for (i = 0; i + 1 <
count; ++i) {
130 sprintf(str, includes_g ?
"ecmult_%ig" :
"ecmult_%i", (
int)
count);
134int main(
int argc,
char **argv) {
148 if(
have_flag(argc, argv,
"pippenger_wnaf")) {
149 printf(
"Using pippenger_wnaf:\n");
151 }
else if(
have_flag(argc, argv,
"strauss_wnaf")) {
152 printf(
"Using strauss_wnaf:\n");
154 }
else if(
have_flag(argc, argv,
"simple")) {
155 printf(
"Using simple algorithm:\n");
160 fprintf(stderr,
"%s: unrecognized argument '%s'.\n", argv[0], argv[1]);
161 fprintf(stderr,
"Use 'pippenger_wnaf', 'strauss_wnaf', 'simple' or no argument to benchmark a combined algorithm.\n");
177 for (i = 0; i <
POINTS; ++i) {
187 for (i = 1; i <= 8; ++i) {
195 for (p = 0; p <= 11; ++p) {
196 for (i = 9; i <= 16; ++i) {
int main(int argc, char **argv)
static void bench_ecmult_setup(void *arg)
static void generate_scalar(uint32_t num, secp256k1_scalar *scalar)
static void bench_ecmult_teardown(void *arg, int iters)
static void run_test(bench_data *data, size_t count, int includes_g, int num_iters)
static void bench_ecmult(void *arg, int iters)
static int bench_callback(secp256k1_scalar *sc, secp256k1_ge *ge, size_t idx, void *arg)
static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng)
Double multiply: R = na*A + ng*G.
static int secp256k1_ecmult_multi_var(const secp256k1_callback *error_callback, const secp256k1_ecmult_context *ctx, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n)
Multi-multiply: R = inp_g_sc * G + sum_i ni * Ai.
#define STRAUSS_SCRATCH_OBJECTS
static int secp256k1_ecmult_pippenger_batch_single(const secp256k1_callback *error_callback, const secp256k1_ecmult_context *actx, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n)
static size_t secp256k1_strauss_scratch_size(size_t n_points)
int(* secp256k1_ecmult_multi_func)(const secp256k1_callback *error_callback, const secp256k1_ecmult_context *, secp256k1_scratch *, secp256k1_gej *, const secp256k1_scalar *, secp256k1_ecmult_multi_callback cb, void *, size_t)
static int secp256k1_ecmult_strauss_batch_single(const secp256k1_callback *error_callback, const secp256k1_ecmult_context *actx, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n)
static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr)
Set r equal to the double of a.
static int secp256k1_gej_is_infinity(const secp256k1_gej *a)
Check whether a group element is the point at infinity.
static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr)
Set r equal to the sum of a and b.
static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len)
Set a batch of group elements equal to the inputs given in jacobian coordinates.
static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a)
Set a group element (jacobian) equal to another which is given in affine coordinates.
static const secp256k1_ge secp256k1_ge_const_g
Generator for secp256k1, value 'g' defined in "Standards for Efficient Cryptography" (SEC2) 2....
Internal SHA-256 implementation.
static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *bin, int *overflow)
Set a scalar from a big endian byte array.
static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v)
Set a scalar to an unsigned integer.
static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
Add two scalars together (modulo the group order).
static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
Multiply two scalars (modulo the group order).
static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a)
Compute the complement of a scalar (modulo the group order).
#define SECP256K1_SCALAR_CONST(d7, d6, d5, d4, d3, d2, d1, d0)
int have_flag(int argc, char **argv, char *flag)
int get_iters(int default_iters)
void run_benchmark(char *name, void(*benchmark)(void *, int), void(*setup)(void *), void(*teardown)(void *, int), void *data, int count, int iter)
static void secp256k1_sha256_initialize(secp256k1_sha256 *hash)
static void secp256k1_sha256_finalize(secp256k1_sha256 *hash, unsigned char *out32)
static void secp256k1_sha256_write(secp256k1_sha256 *hash, const unsigned char *data, size_t size)
#define SECP256K1_CONTEXT_SIGN
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT secp256k1_scratch_space * secp256k1_scratch_space_create(const secp256k1_context *ctx, size_t size) SECP256K1_ARG_NONNULL(1)
Create a secp256k1 scratch space object.
SECP256K1_API secp256k1_context * secp256k1_context_create(unsigned int flags) SECP256K1_WARN_UNUSED_RESULT
Create a secp256k1 context object (in dynamically allocated memory).
SECP256K1_API void secp256k1_scratch_space_destroy(const secp256k1_context *ctx, secp256k1_scratch_space *scratch) SECP256K1_ARG_NONNULL(1)
Destroy a secp256k1 scratch space.
#define SECP256K1_CONTEXT_VERIFY
Flags to pass to secp256k1_context_create, secp256k1_context_preallocated_size, and secp256k1_context...
SECP256K1_API void secp256k1_context_destroy(secp256k1_context *ctx)
Destroy a secp256k1 context object (created in dynamically allocated memory).
secp256k1_scalar * seckeys
secp256k1_ecmult_multi_func ecmult_multi
secp256k1_scratch_space * scratch
secp256k1_scalar * scalars
secp256k1_gej * expected_output
secp256k1_callback error_callback
secp256k1_ecmult_context ecmult_ctx
A group element of the secp256k1 curve, in affine coordinates.
A group element of the secp256k1 curve, in jacobian coordinates.
A scalar modulo the group order of the secp256k1 curve.