Bitcoin ABC 0.30.5
P2P Digital Currency
group_impl.h
Go to the documentation of this file.
1/***********************************************************************
2 * Copyright (c) 2013, 2014 Pieter Wuille *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
5 ***********************************************************************/
6
7#ifndef SECP256K1_GROUP_IMPL_H
8#define SECP256K1_GROUP_IMPL_H
9
10#include "field.h"
11#include "group.h"
12
13/* These exhaustive group test orders and generators are chosen such that:
14 * - The field size is equal to that of secp256k1, so field code is the same.
15 * - The curve equation is of the form y^2=x^3+B for some constant B.
16 * - The subgroup has a generator 2*P, where P.x=1.
17 * - The subgroup has size less than 1000 to permit exhaustive testing.
18 * - The subgroup admits an endomorphism of the form lambda*(x,y) == (beta*x,y).
19 *
20 * These parameters are generated using sage/gen_exhaustive_groups.sage.
21 */
22#if defined(EXHAUSTIVE_TEST_ORDER)
23# if EXHAUSTIVE_TEST_ORDER == 13
25 0xc3459c3d, 0x35326167, 0xcd86cce8, 0x07a2417f,
26 0x5b8bd567, 0xde8538ee, 0x0d507b0c, 0xd128f5bb,
27 0x8e467fec, 0xcd30000a, 0x6cc1184e, 0x25d382c2,
28 0xa2f4494e, 0x2fbe9abc, 0x8b64abac, 0xd005fb24
29);
31 0x3d3486b2, 0x159a9ca5, 0xc75638be, 0xb23a69bc,
32 0x946a45ab, 0x24801247, 0xb4ed2b8e, 0x26b6a417
33);
34# elif EXHAUSTIVE_TEST_ORDER == 199
36 0x226e653f, 0xc8df7744, 0x9bacbf12, 0x7d1dcbf9,
37 0x87f05b2a, 0xe7edbd28, 0x1f564575, 0xc48dcf18,
38 0xa13872c2, 0xe933bb17, 0x5d9ffd5b, 0xb5b6e10c,
39 0x57fe3c00, 0xbaaaa15a, 0xe003ec3e, 0x9c269bae
40);
42 0x2cca28fa, 0xfc614b80, 0x2a3db42b, 0x00ba00b1,
43 0xbea8d943, 0xdace9ab2, 0x9536daea, 0x0074defb
44);
45# else
46# error No known generator for the specified exhaustive test group order.
47# endif
48#else
53 0x79BE667EUL, 0xF9DCBBACUL, 0x55A06295UL, 0xCE870B07UL,
54 0x029BFCDBUL, 0x2DCE28D9UL, 0x59F2815BUL, 0x16F81798UL,
55 0x483ADA77UL, 0x26A3C465UL, 0x5DA4FBFCUL, 0x0E1108A8UL,
56 0xFD17B448UL, 0xA6855419UL, 0x9C47D08FUL, 0xFB10D4B8UL
57);
58
59static const secp256k1_fe secp256k1_fe_const_b = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 7);
60#endif
61
63 secp256k1_fe zi2;
64 secp256k1_fe zi3;
65 secp256k1_fe_sqr(&zi2, zi);
66 secp256k1_fe_mul(&zi3, &zi2, zi);
67 secp256k1_fe_mul(&r->x, &a->x, &zi2);
68 secp256k1_fe_mul(&r->y, &a->y, &zi3);
69 r->infinity = a->infinity;
70}
71
72static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y) {
73 r->infinity = 0;
74 r->x = *x;
75 r->y = *y;
76}
77
79 return a->infinity;
80}
81
82static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a) {
83 *r = *a;
85 secp256k1_fe_negate(&r->y, &r->y, 1);
86}
87
89 secp256k1_fe z2, z3;
90 r->infinity = a->infinity;
91 secp256k1_fe_inv(&a->z, &a->z);
92 secp256k1_fe_sqr(&z2, &a->z);
93 secp256k1_fe_mul(&z3, &a->z, &z2);
94 secp256k1_fe_mul(&a->x, &a->x, &z2);
95 secp256k1_fe_mul(&a->y, &a->y, &z3);
96 secp256k1_fe_set_int(&a->z, 1);
97 r->x = a->x;
98 r->y = a->y;
99}
100
102 secp256k1_fe z2, z3;
103 r->infinity = a->infinity;
104 if (a->infinity) {
105 return;
106 }
107 secp256k1_fe_inv_var(&a->z, &a->z);
108 secp256k1_fe_sqr(&z2, &a->z);
109 secp256k1_fe_mul(&z3, &a->z, &z2);
110 secp256k1_fe_mul(&a->x, &a->x, &z2);
111 secp256k1_fe_mul(&a->y, &a->y, &z3);
112 secp256k1_fe_set_int(&a->z, 1);
113 r->x = a->x;
114 r->y = a->y;
115}
116
117static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len) {
118 secp256k1_fe u;
119 size_t i;
120 size_t last_i = SIZE_MAX;
121
122 for (i = 0; i < len; i++) {
123 if (!a[i].infinity) {
124 /* Use destination's x coordinates as scratch space */
125 if (last_i == SIZE_MAX) {
126 r[i].x = a[i].z;
127 } else {
128 secp256k1_fe_mul(&r[i].x, &r[last_i].x, &a[i].z);
129 }
130 last_i = i;
131 }
132 }
133 if (last_i == SIZE_MAX) {
134 return;
135 }
136 secp256k1_fe_inv_var(&u, &r[last_i].x);
137
138 i = last_i;
139 while (i > 0) {
140 i--;
141 if (!a[i].infinity) {
142 secp256k1_fe_mul(&r[last_i].x, &r[i].x, &u);
143 secp256k1_fe_mul(&u, &u, &a[last_i].z);
144 last_i = i;
145 }
146 }
147 VERIFY_CHECK(!a[last_i].infinity);
148 r[last_i].x = u;
149
150 for (i = 0; i < len; i++) {
151 r[i].infinity = a[i].infinity;
152 if (!a[i].infinity) {
153 secp256k1_ge_set_gej_zinv(&r[i], &a[i], &r[i].x);
154 }
155 }
156}
157
158static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge *r, secp256k1_fe *globalz, const secp256k1_gej *a, const secp256k1_fe *zr) {
159 size_t i = len - 1;
160 secp256k1_fe zs;
161
162 if (len > 0) {
163 /* The z of the final point gives us the "global Z" for the table. */
164 r[i].x = a[i].x;
165 r[i].y = a[i].y;
166 /* Ensure all y values are in weak normal form for fast negation of points */
168 *globalz = a[i].z;
169 r[i].infinity = 0;
170 zs = zr[i];
171
172 /* Work our way backwards, using the z-ratios to scale the x/y values. */
173 while (i > 0) {
174 if (i != len - 1) {
175 secp256k1_fe_mul(&zs, &zs, &zr[i]);
176 }
177 i--;
178 secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zs);
179 }
180 }
181}
182
184 r->infinity = 1;
188}
189
191 r->infinity = 1;
194}
195
197 r->infinity = 0;
201}
202
204 r->infinity = 0;
207}
208
210 secp256k1_fe x2, x3;
211 r->x = *x;
212 secp256k1_fe_sqr(&x2, x);
213 secp256k1_fe_mul(&x3, x, &x2);
214 r->infinity = 0;
216 return secp256k1_fe_sqrt(&r->y, &x3);
217}
218
219static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd) {
220 if (!secp256k1_ge_set_xquad(r, x)) {
221 return 0;
222 }
224 if (secp256k1_fe_is_odd(&r->y) != odd) {
225 secp256k1_fe_negate(&r->y, &r->y, 1);
226 }
227 return 1;
228
229}
230
232 r->infinity = a->infinity;
233 r->x = a->x;
234 r->y = a->y;
235 secp256k1_fe_set_int(&r->z, 1);
236}
237
238static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a) {
239 secp256k1_fe r, r2;
241 secp256k1_fe_sqr(&r, &a->z); secp256k1_fe_mul(&r, &r, x);
242 r2 = a->x; secp256k1_fe_normalize_weak(&r2);
243 return secp256k1_fe_equal_var(&r, &r2);
244}
245
247 r->infinity = a->infinity;
248 r->x = a->x;
249 r->y = a->y;
250 r->z = a->z;
252 secp256k1_fe_negate(&r->y, &r->y, 1);
253}
254
256 return a->infinity;
257}
258
260 secp256k1_fe y2, x3;
261 if (a->infinity) {
262 return 0;
263 }
264 /* y^2 = x^3 + 7 */
265 secp256k1_fe_sqr(&y2, &a->y);
266 secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x);
269 return secp256k1_fe_equal_var(&y2, &x3);
270}
271
273 /* Operations: 3 mul, 4 sqr, 0 normalize, 12 mul_int/add/negate.
274 *
275 * Note that there is an implementation described at
276 * https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
277 * which trades a multiply for a square, but in practice this is actually slower,
278 * mainly because it requires more normalizations.
279 */
280 secp256k1_fe t1,t2,t3,t4;
281
282 r->infinity = a->infinity;
283
284 secp256k1_fe_mul(&r->z, &a->z, &a->y);
285 secp256k1_fe_mul_int(&r->z, 2); /* Z' = 2*Y*Z (2) */
286 secp256k1_fe_sqr(&t1, &a->x);
287 secp256k1_fe_mul_int(&t1, 3); /* T1 = 3*X^2 (3) */
288 secp256k1_fe_sqr(&t2, &t1); /* T2 = 9*X^4 (1) */
289 secp256k1_fe_sqr(&t3, &a->y);
290 secp256k1_fe_mul_int(&t3, 2); /* T3 = 2*Y^2 (2) */
291 secp256k1_fe_sqr(&t4, &t3);
292 secp256k1_fe_mul_int(&t4, 2); /* T4 = 8*Y^4 (2) */
293 secp256k1_fe_mul(&t3, &t3, &a->x); /* T3 = 2*X*Y^2 (1) */
294 r->x = t3;
295 secp256k1_fe_mul_int(&r->x, 4); /* X' = 8*X*Y^2 (4) */
296 secp256k1_fe_negate(&r->x, &r->x, 4); /* X' = -8*X*Y^2 (5) */
297 secp256k1_fe_add(&r->x, &t2); /* X' = 9*X^4 - 8*X*Y^2 (6) */
298 secp256k1_fe_negate(&t2, &t2, 1); /* T2 = -9*X^4 (2) */
299 secp256k1_fe_mul_int(&t3, 6); /* T3 = 12*X*Y^2 (6) */
300 secp256k1_fe_add(&t3, &t2); /* T3 = 12*X*Y^2 - 9*X^4 (8) */
301 secp256k1_fe_mul(&r->y, &t1, &t3); /* Y' = 36*X^3*Y^2 - 27*X^6 (1) */
302 secp256k1_fe_negate(&t2, &t4, 2); /* T2 = -8*Y^4 (3) */
303 secp256k1_fe_add(&r->y, &t2); /* Y' = 36*X^3*Y^2 - 27*X^6 - 8*Y^4 (4) */
304}
305
317 if (a->infinity) {
318 r->infinity = 1;
319 if (rzr != NULL) {
320 secp256k1_fe_set_int(rzr, 1);
321 }
322 return;
323 }
324
325 if (rzr != NULL) {
326 *rzr = a->y;
328 secp256k1_fe_mul_int(rzr, 2);
329 }
330
332}
333
335 /* Operations: 12 mul, 4 sqr, 2 normalize, 12 mul_int/add/negate */
336 secp256k1_fe z22, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
337
338 if (a->infinity) {
339 VERIFY_CHECK(rzr == NULL);
340 *r = *b;
341 return;
342 }
343
344 if (b->infinity) {
345 if (rzr != NULL) {
346 secp256k1_fe_set_int(rzr, 1);
347 }
348 *r = *a;
349 return;
350 }
351
352 r->infinity = 0;
353 secp256k1_fe_sqr(&z22, &b->z);
354 secp256k1_fe_sqr(&z12, &a->z);
355 secp256k1_fe_mul(&u1, &a->x, &z22);
356 secp256k1_fe_mul(&u2, &b->x, &z12);
357 secp256k1_fe_mul(&s1, &a->y, &z22); secp256k1_fe_mul(&s1, &s1, &b->z);
358 secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z);
359 secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
360 secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2);
363 secp256k1_gej_double_var(r, a, rzr);
364 } else {
365 if (rzr != NULL) {
366 secp256k1_fe_set_int(rzr, 0);
367 }
369 }
370 return;
371 }
372 secp256k1_fe_sqr(&i2, &i);
373 secp256k1_fe_sqr(&h2, &h);
374 secp256k1_fe_mul(&h3, &h, &h2);
375 secp256k1_fe_mul(&h, &h, &b->z);
376 if (rzr != NULL) {
377 *rzr = h;
378 }
379 secp256k1_fe_mul(&r->z, &a->z, &h);
380 secp256k1_fe_mul(&t, &u1, &h2);
381 r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2);
382 secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i);
383 secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1);
384 secp256k1_fe_add(&r->y, &h3);
385}
386
388 /* 8 mul, 3 sqr, 4 normalize, 12 mul_int/add/negate */
389 secp256k1_fe z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
390 if (a->infinity) {
391 VERIFY_CHECK(rzr == NULL);
393 return;
394 }
395 if (b->infinity) {
396 if (rzr != NULL) {
397 secp256k1_fe_set_int(rzr, 1);
398 }
399 *r = *a;
400 return;
401 }
402 r->infinity = 0;
403
404 secp256k1_fe_sqr(&z12, &a->z);
405 u1 = a->x; secp256k1_fe_normalize_weak(&u1);
406 secp256k1_fe_mul(&u2, &b->x, &z12);
407 s1 = a->y; secp256k1_fe_normalize_weak(&s1);
408 secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z);
409 secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
410 secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2);
413 secp256k1_gej_double_var(r, a, rzr);
414 } else {
415 if (rzr != NULL) {
416 secp256k1_fe_set_int(rzr, 0);
417 }
419 }
420 return;
421 }
422 secp256k1_fe_sqr(&i2, &i);
423 secp256k1_fe_sqr(&h2, &h);
424 secp256k1_fe_mul(&h3, &h, &h2);
425 if (rzr != NULL) {
426 *rzr = h;
427 }
428 secp256k1_fe_mul(&r->z, &a->z, &h);
429 secp256k1_fe_mul(&t, &u1, &h2);
430 r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2);
431 secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i);
432 secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1);
433 secp256k1_fe_add(&r->y, &h3);
434}
435
436static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv) {
437 /* 9 mul, 3 sqr, 4 normalize, 12 mul_int/add/negate */
438 secp256k1_fe az, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
439
440 if (b->infinity) {
441 *r = *a;
442 return;
443 }
444 if (a->infinity) {
445 secp256k1_fe bzinv2, bzinv3;
446 r->infinity = b->infinity;
447 secp256k1_fe_sqr(&bzinv2, bzinv);
448 secp256k1_fe_mul(&bzinv3, &bzinv2, bzinv);
449 secp256k1_fe_mul(&r->x, &b->x, &bzinv2);
450 secp256k1_fe_mul(&r->y, &b->y, &bzinv3);
451 secp256k1_fe_set_int(&r->z, 1);
452 return;
453 }
454 r->infinity = 0;
455
464 secp256k1_fe_mul(&az, &a->z, bzinv);
465
466 secp256k1_fe_sqr(&z12, &az);
467 u1 = a->x; secp256k1_fe_normalize_weak(&u1);
468 secp256k1_fe_mul(&u2, &b->x, &z12);
469 s1 = a->y; secp256k1_fe_normalize_weak(&s1);
470 secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &az);
471 secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
472 secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2);
475 secp256k1_gej_double_var(r, a, NULL);
476 } else {
478 }
479 return;
480 }
481 secp256k1_fe_sqr(&i2, &i);
482 secp256k1_fe_sqr(&h2, &h);
483 secp256k1_fe_mul(&h3, &h, &h2);
484 r->z = a->z; secp256k1_fe_mul(&r->z, &r->z, &h);
485 secp256k1_fe_mul(&t, &u1, &h2);
486 r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2);
487 secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i);
488 secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1);
489 secp256k1_fe_add(&r->y, &h3);
490}
491
492
494 /* Operations: 7 mul, 5 sqr, 4 normalize, 21 mul_int/add/negate/cmov */
495 static const secp256k1_fe fe_1 = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1);
496 secp256k1_fe zz, u1, u2, s1, s2, t, tt, m, n, q, rr;
497 secp256k1_fe m_alt, rr_alt;
498 int infinity, degenerate;
500 VERIFY_CHECK(a->infinity == 0 || a->infinity == 1);
501
552 secp256k1_fe_sqr(&zz, &a->z); /* z = Z1^2 */
553 u1 = a->x; secp256k1_fe_normalize_weak(&u1); /* u1 = U1 = X1*Z2^2 (1) */
554 secp256k1_fe_mul(&u2, &b->x, &zz); /* u2 = U2 = X2*Z1^2 (1) */
555 s1 = a->y; secp256k1_fe_normalize_weak(&s1); /* s1 = S1 = Y1*Z2^3 (1) */
556 secp256k1_fe_mul(&s2, &b->y, &zz); /* s2 = Y2*Z1^2 (1) */
557 secp256k1_fe_mul(&s2, &s2, &a->z); /* s2 = S2 = Y2*Z1^3 (1) */
558 t = u1; secp256k1_fe_add(&t, &u2); /* t = T = U1+U2 (2) */
559 m = s1; secp256k1_fe_add(&m, &s2); /* m = M = S1+S2 (2) */
560 secp256k1_fe_sqr(&rr, &t); /* rr = T^2 (1) */
561 secp256k1_fe_negate(&m_alt, &u2, 1); /* Malt = -X2*Z1^2 */
562 secp256k1_fe_mul(&tt, &u1, &m_alt); /* tt = -U1*U2 (2) */
563 secp256k1_fe_add(&rr, &tt); /* rr = R = T^2-U1*U2 (3) */
566 degenerate = secp256k1_fe_normalizes_to_zero(&m) &
568 /* This only occurs when y1 == -y2 and x1^3 == x2^3, but x1 != x2.
569 * This means either x1 == beta*x2 or beta*x1 == x2, where beta is
570 * a nontrivial cube root of one. In either case, an alternate
571 * non-indeterminate expression for lambda is (y1 - y2)/(x1 - x2),
572 * so we set R/M equal to this. */
573 rr_alt = s1;
574 secp256k1_fe_mul_int(&rr_alt, 2); /* rr = Y1*Z2^3 - Y2*Z1^3 (2) */
575 secp256k1_fe_add(&m_alt, &u1); /* Malt = X1*Z2^2 - X2*Z1^2 */
576
577 secp256k1_fe_cmov(&rr_alt, &rr, !degenerate);
578 secp256k1_fe_cmov(&m_alt, &m, !degenerate);
579 /* Now Ralt / Malt = lambda and is guaranteed not to be 0/0.
580 * From here on out Ralt and Malt represent the numerator
581 * and denominator of lambda; R and M represent the explicit
582 * expressions x1^2 + x2^2 + x1x2 and y1 + y2. */
583 secp256k1_fe_sqr(&n, &m_alt); /* n = Malt^2 (1) */
584 secp256k1_fe_mul(&q, &n, &t); /* q = Q = T*Malt^2 (1) */
585 /* These two lines use the observation that either M == Malt or M == 0,
586 * so M^3 * Malt is either Malt^4 (which is computed by squaring), or
587 * zero (which is "computed" by cmov). So the cost is one squaring
588 * versus two multiplications. */
589 secp256k1_fe_sqr(&n, &n);
590 secp256k1_fe_cmov(&n, &m, degenerate); /* n = M^3 * Malt (2) */
591 secp256k1_fe_sqr(&t, &rr_alt); /* t = Ralt^2 (1) */
592 secp256k1_fe_mul(&r->z, &a->z, &m_alt); /* r->z = Malt*Z (1) */
593 infinity = secp256k1_fe_normalizes_to_zero(&r->z) & ~a->infinity;
594 secp256k1_fe_mul_int(&r->z, 2); /* r->z = Z3 = 2*Malt*Z (2) */
595 secp256k1_fe_negate(&q, &q, 1); /* q = -Q (2) */
596 secp256k1_fe_add(&t, &q); /* t = Ralt^2-Q (3) */
598 r->x = t; /* r->x = Ralt^2-Q (1) */
599 secp256k1_fe_mul_int(&t, 2); /* t = 2*x3 (2) */
600 secp256k1_fe_add(&t, &q); /* t = 2*x3 - Q: (4) */
601 secp256k1_fe_mul(&t, &t, &rr_alt); /* t = Ralt*(2*x3 - Q) (1) */
602 secp256k1_fe_add(&t, &n); /* t = Ralt*(2*x3 - Q) + M^3*Malt (3) */
603 secp256k1_fe_negate(&r->y, &t, 3); /* r->y = Ralt*(Q - 2x3) - M^3*Malt (4) */
605 secp256k1_fe_mul_int(&r->x, 4); /* r->x = X3 = 4*(Ralt^2-Q) */
606 secp256k1_fe_mul_int(&r->y, 4); /* r->y = Y3 = 4*Ralt*(Q - 2x3) - 4*M^3*Malt (4) */
607
609 secp256k1_fe_cmov(&r->x, &b->x, a->infinity);
610 secp256k1_fe_cmov(&r->y, &b->y, a->infinity);
611 secp256k1_fe_cmov(&r->z, &fe_1, a->infinity);
612 r->infinity = infinity;
613}
614
616 /* Operations: 4 mul, 1 sqr */
617 secp256k1_fe zz;
619 secp256k1_fe_sqr(&zz, s);
620 secp256k1_fe_mul(&r->x, &r->x, &zz); /* r->x *= s^2 */
621 secp256k1_fe_mul(&r->y, &r->y, &zz);
622 secp256k1_fe_mul(&r->y, &r->y, s); /* r->y *= s^3 */
623 secp256k1_fe_mul(&r->z, &r->z, s); /* r->z *= s */
624}
625
627 secp256k1_fe x, y;
629 x = a->x;
631 y = a->y;
633 secp256k1_fe_to_storage(&r->x, &x);
634 secp256k1_fe_to_storage(&r->y, &y);
635}
636
638 secp256k1_fe_from_storage(&r->x, &a->x);
639 secp256k1_fe_from_storage(&r->y, &a->y);
640 r->infinity = 0;
641}
642
644 secp256k1_fe_storage_cmov(&r->x, &a->x, flag);
645 secp256k1_fe_storage_cmov(&r->y, &a->y, flag);
646}
647
649 static const secp256k1_fe beta = SECP256K1_FE_CONST(
650 0x7ae96a2bul, 0x657c0710ul, 0x6e64479eul, 0xac3434e9ul,
651 0x9cf04975ul, 0x12f58995ul, 0xc1396c28ul, 0x719501eeul
652 );
653 *r = *a;
654 secp256k1_fe_mul(&r->x, &r->x, &beta);
655}
656
658 secp256k1_fe yz;
659
660 if (a->infinity) {
661 return 0;
662 }
663
664 /* We rely on the fact that the Jacobi symbol of 1 / a->z^3 is the same as
665 * that of a->z. Thus a->y / a->z^3 is a quadratic residue iff a->y * a->z
666 is */
667 secp256k1_fe_mul(&yz, &a->y, &a->z);
668 return secp256k1_fe_is_quad_var(&yz);
669}
670
672#ifdef EXHAUSTIVE_TEST_ORDER
673 secp256k1_gej out;
674 int i;
675
676 /* A very simple EC multiplication ladder that avoids a dependency on ecmult. */
678 for (i = 0; i < 32; ++i) {
679 secp256k1_gej_double_var(&out, &out, NULL);
680 if ((((uint32_t)EXHAUSTIVE_TEST_ORDER) >> (31 - i)) & 1) {
681 secp256k1_gej_add_ge_var(&out, &out, ge, NULL);
682 }
683 }
684 return secp256k1_gej_is_infinity(&out);
685#else
686 (void)ge;
687 /* The real secp256k1 group has cofactor 1, so the subgroup is the entire curve. */
688 return 1;
689#endif
690}
691
692#endif /* SECP256K1_GROUP_IMPL_H */
static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a)
Potentially faster version of secp256k1_fe_inv, without constant-time guarantee.
static void secp256k1_fe_normalize_weak(secp256k1_fe *r)
Weakly normalize a field element: reduce its magnitude to 1, but don't fully normalize.
static int secp256k1_fe_is_quad_var(const secp256k1_fe *a)
Checks whether a field element is a quadratic residue.
static int secp256k1_fe_equal_var(const secp256k1_fe *a, const secp256k1_fe *b)
Same as secp256k1_fe_equal, but may be variable time.
static int secp256k1_fe_sqrt(secp256k1_fe *r, const secp256k1_fe *a)
If a has a square root, it is computed in r and 1 is returned.
static void secp256k1_fe_normalize_var(secp256k1_fe *r)
Normalize a field element, without constant-time guarantee.
static void secp256k1_fe_clear(secp256k1_fe *a)
Sets a field element equal to zero, initializing all fields.
static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a)
Sets a field element to be the (modular) inverse of another.
static void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag)
If flag is true, set *r equal to *a; otherwise leave it.
static void secp256k1_fe_mul_int(secp256k1_fe *r, int a)
Multiplies the passed field element with a small integer constant.
static void secp256k1_fe_negate(secp256k1_fe *r, const secp256k1_fe *a, int m)
Set a field element equal to the additive inverse of another.
static int secp256k1_fe_is_odd(const secp256k1_fe *a)
Check the "oddness" of a field element.
static void secp256k1_fe_set_int(secp256k1_fe *r, int a)
Set a field element equal to a small integer.
static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe *SECP256K1_RESTRICT b)
Sets a field element to be the product of two others.
static int secp256k1_fe_is_zero(const secp256k1_fe *a)
Verify whether a field element is zero.
static void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a)
Convert a field element back from the storage type.
static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe *r)
Verify whether a field element represents zero i.e.
static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a)
Sets a field element to be the square of another.
static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a)
Adds a field element to another.
static void secp256k1_fe_normalize(secp256k1_fe *r)
Field element module.
static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a)
Convert a field element to the storage type.
static int secp256k1_fe_normalizes_to_zero(secp256k1_fe *r)
Verify whether a field element represents zero i.e.
static void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag)
If flag is true, set *r equal to *a; otherwise leave it.
#define SECP256K1_FE_CONST(d7, d6, d5, d4, d3, d2, d1, d0)
Definition: field_10x26.h:40
#define SECP256K1_GE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p)
Definition: group.h:19
static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr)
Definition: group_impl.h:306
static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv)
Definition: group_impl.h:436
static void secp256k1_gej_clear(secp256k1_gej *r)
Definition: group_impl.h:196
static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a)
Definition: group_impl.h:648
static void secp256k1_gej_set_infinity(secp256k1_gej *r)
Definition: group_impl.h:183
static int secp256k1_gej_is_infinity(const secp256k1_gej *a)
Definition: group_impl.h:255
static void secp256k1_ge_clear(secp256k1_ge *r)
Definition: group_impl.h:203
static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y)
Definition: group_impl.h:72
static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd)
Definition: group_impl.h:219
static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr)
Definition: group_impl.h:387
static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge *r, secp256k1_fe *globalz, const secp256k1_gej *a, const secp256k1_fe *zr)
Definition: group_impl.h:158
static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b)
Definition: group_impl.h:493
static void secp256k1_ge_set_gej_zinv(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zi)
Definition: group_impl.h:62
static int secp256k1_ge_is_valid_var(const secp256k1_ge *a)
Definition: group_impl.h:259
static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storage *a)
Definition: group_impl.h:637
static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr)
Definition: group_impl.h:334
static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *s)
Definition: group_impl.h:615
static int secp256k1_ge_set_xquad(secp256k1_ge *r, const secp256k1_fe *x)
Definition: group_impl.h:209
static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a)
Definition: group_impl.h:238
static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a)
Definition: group_impl.h:88
static int secp256k1_ge_is_in_correct_subgroup(const secp256k1_ge *ge)
Definition: group_impl.h:671
static const secp256k1_fe secp256k1_fe_const_b
Definition: group_impl.h:59
static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a)
Definition: group_impl.h:82
static const secp256k1_ge secp256k1_ge_const_g
Generator for secp256k1, value 'g' defined in "Standards for Efficient Cryptography" (SEC2) 2....
Definition: group_impl.h:52
static int secp256k1_ge_is_infinity(const secp256k1_ge *a)
Definition: group_impl.h:78
static void secp256k1_ge_set_infinity(secp256k1_ge *r)
Definition: group_impl.h:190
static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len)
Definition: group_impl.h:117
static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a)
Definition: group_impl.h:231
static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge *a)
Definition: group_impl.h:626
static SECP256K1_INLINE void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag)
Definition: group_impl.h:643
static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a)
Definition: group_impl.h:101
static int secp256k1_gej_has_quad_y_var(const secp256k1_gej *a)
Definition: group_impl.h:657
static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a)
Definition: group_impl.h:246
static SECP256K1_INLINE void secp256k1_gej_double(secp256k1_gej *r, const secp256k1_gej *a)
Definition: group_impl.h:272
#define VERIFY_CHECK(cond)
Definition: util.h:68
#define SECP256K1_INLINE
Definition: secp256k1.h:127
secp256k1_fe_storage x
Definition: group.h:34
secp256k1_fe_storage y
Definition: group.h:35
A group element of the secp256k1 curve, in affine coordinates.
Definition: group.h:13
int infinity
Definition: group.h:16
secp256k1_fe x
Definition: group.h:14
secp256k1_fe y
Definition: group.h:15
A group element of the secp256k1 curve, in jacobian coordinates.
Definition: group.h:23
secp256k1_fe y
Definition: group.h:25
secp256k1_fe x
Definition: group.h:24
int infinity
Definition: group.h:27
secp256k1_fe z
Definition: group.h:26
#define EXHAUSTIVE_TEST_ORDER