Bitcoin ABC 0.32.8
P2P Digital Currency
bench_internal.c
Go to the documentation of this file.
1/***********************************************************************
2 * Copyright (c) 2014-2015 Pieter Wuille *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
5 ***********************************************************************/
6#include <stdio.h>
7
8#include "secp256k1.c"
9#include "../include/secp256k1.h"
10
11#include "assumptions.h"
12#include "util.h"
13#include "hash_impl.h"
14#include "field_impl.h"
15#include "group_impl.h"
16#include "scalar_impl.h"
17#include "ecmult_const_impl.h"
18#include "ecmult_impl.h"
19#include "bench.h"
20
21typedef struct {
26 unsigned char data[64];
27 int wnaf[256];
28} bench_inv;
29
30void bench_setup(void* arg) {
31 bench_inv *data = (bench_inv*)arg;
32
33 static const unsigned char init[4][32] = {
34 /* Initializer for scalar[0], fe[0], first half of data, the X coordinate of ge[0],
35 and the (implied affine) X coordinate of gej[0]. */
36 {
37 0x02, 0x03, 0x05, 0x07, 0x0b, 0x0d, 0x11, 0x13,
38 0x17, 0x1d, 0x1f, 0x25, 0x29, 0x2b, 0x2f, 0x35,
39 0x3b, 0x3d, 0x43, 0x47, 0x49, 0x4f, 0x53, 0x59,
40 0x61, 0x65, 0x67, 0x6b, 0x6d, 0x71, 0x7f, 0x83
41 },
42 /* Initializer for scalar[1], fe[1], first half of data, the X coordinate of ge[1],
43 and the (implied affine) X coordinate of gej[1]. */
44 {
45 0x82, 0x83, 0x85, 0x87, 0x8b, 0x8d, 0x81, 0x83,
46 0x97, 0xad, 0xaf, 0xb5, 0xb9, 0xbb, 0xbf, 0xc5,
47 0xdb, 0xdd, 0xe3, 0xe7, 0xe9, 0xef, 0xf3, 0xf9,
48 0x11, 0x15, 0x17, 0x1b, 0x1d, 0xb1, 0xbf, 0xd3
49 },
50 /* Initializer for fe[2] and the Z coordinate of gej[0]. */
51 {
52 0x3d, 0x2d, 0xef, 0xf4, 0x25, 0x98, 0x4f, 0x5d,
53 0xe2, 0xca, 0x5f, 0x41, 0x3f, 0x3f, 0xce, 0x44,
54 0xaa, 0x2c, 0x53, 0x8a, 0xc6, 0x59, 0x1f, 0x38,
55 0x38, 0x23, 0xe4, 0x11, 0x27, 0xc6, 0xa0, 0xe7
56 },
57 /* Initializer for fe[3] and the Z coordinate of gej[1]. */
58 {
59 0xbd, 0x21, 0xa5, 0xe1, 0x13, 0x50, 0x73, 0x2e,
60 0x52, 0x98, 0xc8, 0x9e, 0xab, 0x00, 0xa2, 0x68,
61 0x43, 0xf5, 0xd7, 0x49, 0x80, 0x72, 0xa7, 0xf3,
62 0xd7, 0x60, 0xe6, 0xab, 0x90, 0x92, 0xdf, 0xc5
63 }
64 };
65
66 secp256k1_scalar_set_b32(&data->scalar[0], init[0], NULL);
67 secp256k1_scalar_set_b32(&data->scalar[1], init[1], NULL);
68 secp256k1_fe_set_b32(&data->fe[0], init[0]);
69 secp256k1_fe_set_b32(&data->fe[1], init[1]);
70 secp256k1_fe_set_b32(&data->fe[2], init[2]);
71 secp256k1_fe_set_b32(&data->fe[3], init[3]);
72 CHECK(secp256k1_ge_set_xo_var(&data->ge[0], &data->fe[0], 0));
73 CHECK(secp256k1_ge_set_xo_var(&data->ge[1], &data->fe[1], 1));
74 secp256k1_gej_set_ge(&data->gej[0], &data->ge[0]);
75 secp256k1_gej_rescale(&data->gej[0], &data->fe[2]);
76 secp256k1_gej_set_ge(&data->gej[1], &data->ge[1]);
77 secp256k1_gej_rescale(&data->gej[1], &data->fe[3]);
78 memcpy(data->data, init[0], 32);
79 memcpy(data->data + 32, init[1], 32);
80}
81
82void bench_scalar_add(void* arg, int iters) {
83 int i, j = 0;
84 bench_inv *data = (bench_inv*)arg;
85
86 for (i = 0; i < iters; i++) {
87 j += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
88 }
89 CHECK(j <= iters);
90}
91
92void bench_scalar_negate(void* arg, int iters) {
93 int i;
94 bench_inv *data = (bench_inv*)arg;
95
96 for (i = 0; i < iters; i++) {
97 secp256k1_scalar_negate(&data->scalar[0], &data->scalar[0]);
98 }
99}
100
101void bench_scalar_mul(void* arg, int iters) {
102 int i;
103 bench_inv *data = (bench_inv*)arg;
104
105 for (i = 0; i < iters; i++) {
106 secp256k1_scalar_mul(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
107 }
108}
109
110void bench_scalar_split(void* arg, int iters) {
111 int i, j = 0;
112 bench_inv *data = (bench_inv*)arg;
114
115 for (i = 0; i < iters; i++) {
116 secp256k1_scalar_split_lambda(&tmp, &data->scalar[1], &data->scalar[0]);
117 j += secp256k1_scalar_add(&data->scalar[0], &tmp, &data->scalar[1]);
118 }
119 CHECK(j <= iters);
120}
121
122void bench_scalar_inverse(void* arg, int iters) {
123 int i, j = 0;
124 bench_inv *data = (bench_inv*)arg;
125
126 for (i = 0; i < iters; i++) {
127 secp256k1_scalar_inverse(&data->scalar[0], &data->scalar[0]);
128 j += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
129 }
130 CHECK(j <= iters);
131}
132
133void bench_scalar_inverse_var(void* arg, int iters) {
134 int i, j = 0;
135 bench_inv *data = (bench_inv*)arg;
136
137 for (i = 0; i < iters; i++) {
138 secp256k1_scalar_inverse_var(&data->scalar[0], &data->scalar[0]);
139 j += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
140 }
141 CHECK(j <= iters);
142}
143
144void bench_field_half(void* arg, int iters) {
145 int i;
146 bench_inv *data = (bench_inv*)arg;
147
148 for (i = 0; i < iters; i++) {
149 secp256k1_fe_half(&data->fe[0]);
150 }
151}
152
153void bench_field_normalize(void* arg, int iters) {
154 int i;
155 bench_inv *data = (bench_inv*)arg;
156
157 for (i = 0; i < iters; i++) {
158 secp256k1_fe_normalize(&data->fe[0]);
159 }
160}
161
162void bench_field_normalize_weak(void* arg, int iters) {
163 int i;
164 bench_inv *data = (bench_inv*)arg;
165
166 for (i = 0; i < iters; i++) {
168 }
169}
170
171void bench_field_mul(void* arg, int iters) {
172 int i;
173 bench_inv *data = (bench_inv*)arg;
174
175 for (i = 0; i < iters; i++) {
176 secp256k1_fe_mul(&data->fe[0], &data->fe[0], &data->fe[1]);
177 }
178}
179
180void bench_field_sqr(void* arg, int iters) {
181 int i;
182 bench_inv *data = (bench_inv*)arg;
183
184 for (i = 0; i < iters; i++) {
185 secp256k1_fe_sqr(&data->fe[0], &data->fe[0]);
186 }
187}
188
189void bench_field_inverse(void* arg, int iters) {
190 int i;
191 bench_inv *data = (bench_inv*)arg;
192
193 for (i = 0; i < iters; i++) {
194 secp256k1_fe_inv(&data->fe[0], &data->fe[0]);
195 secp256k1_fe_add(&data->fe[0], &data->fe[1]);
196 }
197}
198
199void bench_field_inverse_var(void* arg, int iters) {
200 int i;
201 bench_inv *data = (bench_inv*)arg;
202
203 for (i = 0; i < iters; i++) {
204 secp256k1_fe_inv_var(&data->fe[0], &data->fe[0]);
205 secp256k1_fe_add(&data->fe[0], &data->fe[1]);
206 }
207}
208
209void bench_field_sqrt(void* arg, int iters) {
210 int i, j = 0;
211 bench_inv *data = (bench_inv*)arg;
212 secp256k1_fe t;
213
214 for (i = 0; i < iters; i++) {
215 t = data->fe[0];
216 j += secp256k1_fe_sqrt(&data->fe[0], &t);
217 secp256k1_fe_add(&data->fe[0], &data->fe[1]);
218 }
219 CHECK(j <= iters);
220}
221
222void bench_group_double_var(void* arg, int iters) {
223 int i;
224 bench_inv *data = (bench_inv*)arg;
225
226 for (i = 0; i < iters; i++) {
227 secp256k1_gej_double_var(&data->gej[0], &data->gej[0], NULL);
228 }
229}
230
231void bench_group_add_var(void* arg, int iters) {
232 int i;
233 bench_inv *data = (bench_inv*)arg;
234
235 for (i = 0; i < iters; i++) {
236 secp256k1_gej_add_var(&data->gej[0], &data->gej[0], &data->gej[1], NULL);
237 }
238}
239
240void bench_group_add_affine(void* arg, int iters) {
241 int i;
242 bench_inv *data = (bench_inv*)arg;
243
244 for (i = 0; i < iters; i++) {
245 secp256k1_gej_add_ge(&data->gej[0], &data->gej[0], &data->ge[1]);
246 }
247}
248
249void bench_group_add_affine_var(void* arg, int iters) {
250 int i;
251 bench_inv *data = (bench_inv*)arg;
252
253 for (i = 0; i < iters; i++) {
254 secp256k1_gej_add_ge_var(&data->gej[0], &data->gej[0], &data->ge[1], NULL);
255 }
256}
257
258void bench_group_add_zinv_var(void* arg, int iters) {
259 int i;
260 bench_inv *data = (bench_inv*)arg;
261
262 for (i = 0; i < iters; i++) {
263 secp256k1_gej_add_zinv_var(&data->gej[0], &data->gej[0], &data->ge[1], &data->gej[0].y);
264 }
265}
266
267void bench_group_jacobi_var(void* arg, int iters) {
268 int i, j = 0;
269 bench_inv *data = (bench_inv*)arg;
270
271 for (i = 0; i < iters; i++) {
272 j += secp256k1_gej_has_quad_y_var(&data->gej[0]);
273 /* Vary the Y and Z coordinates of the input (the X coordinate doesn't matter to
274 secp256k1_gej_has_quad_y_var). Note that the resulting coordinates will
275 generally not correspond to a point on the curve, but this is not a problem
276 for the code being benchmarked here. Adding and normalizing have less
277 overhead than EC operations (which could guarantee the point remains on the
278 curve). */
279 secp256k1_fe_add(&data->gej[0].y, &data->fe[1]);
280 secp256k1_fe_add(&data->gej[0].z, &data->fe[2]);
283 }
284 CHECK(j <= iters);
285}
286
287void bench_group_to_affine_var(void* arg, int iters) {
288 int i;
289 bench_inv *data = (bench_inv*)arg;
290
291 for (i = 0; i < iters; ++i) {
292 secp256k1_ge_set_gej_var(&data->ge[1], &data->gej[0]);
293 /* Use the output affine X/Y coordinates to vary the input X/Y/Z coordinates.
294 Similar to bench_group_jacobi_var, this approach does not result in
295 coordinates of points on the curve. */
296 secp256k1_fe_add(&data->gej[0].x, &data->ge[1].y);
297 secp256k1_fe_add(&data->gej[0].y, &data->fe[2]);
298 secp256k1_fe_add(&data->gej[0].z, &data->ge[1].x);
302 }
303}
304
305void bench_ecmult_wnaf(void* arg, int iters) {
306 int i, bits = 0, overflow = 0;
307 bench_inv *data = (bench_inv*)arg;
308
309 for (i = 0; i < iters; i++) {
310 bits += secp256k1_ecmult_wnaf(data->wnaf, 256, &data->scalar[0], WINDOW_A);
311 overflow += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
312 }
313 CHECK(overflow >= 0);
314 CHECK(bits <= 256*iters);
315}
316
317void bench_wnaf_const(void* arg, int iters) {
318 int i, bits = 0, overflow = 0;
319 bench_inv *data = (bench_inv*)arg;
320
321 for (i = 0; i < iters; i++) {
322 bits += secp256k1_wnaf_const(data->wnaf, &data->scalar[0], WINDOW_A, 256);
323 overflow += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
324 }
325 CHECK(overflow >= 0);
326 CHECK(bits <= 256*iters);
327}
328
329
330void bench_sha256(void* arg, int iters) {
331 int i;
332 bench_inv *data = (bench_inv*)arg;
334
335 for (i = 0; i < iters; i++) {
337 secp256k1_sha256_write(&sha, data->data, 32);
338 secp256k1_sha256_finalize(&sha, data->data);
339 }
340}
341
342void bench_hmac_sha256(void* arg, int iters) {
343 int i;
344 bench_inv *data = (bench_inv*)arg;
346
347 for (i = 0; i < iters; i++) {
348 secp256k1_hmac_sha256_initialize(&hmac, data->data, 32);
349 secp256k1_hmac_sha256_write(&hmac, data->data, 32);
351 }
352}
353
354void bench_rfc6979_hmac_sha256(void* arg, int iters) {
355 int i;
356 bench_inv *data = (bench_inv*)arg;
358
359 for (i = 0; i < iters; i++) {
362 }
363}
364
365void bench_context_verify(void* arg, int iters) {
366 int i;
367 (void)arg;
368 for (i = 0; i < iters; i++) {
370 }
371}
372
373void bench_context_sign(void* arg, int iters) {
374 int i;
375 (void)arg;
376 for (i = 0; i < iters; i++) {
378 }
379}
380
381int main(int argc, char **argv) {
382 bench_inv data;
383 int iters = get_iters(20000);
384 int d = argc == 1; /* default */
386
387 if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "add")) run_benchmark("scalar_add", bench_scalar_add, bench_setup, NULL, &data, 10, iters*100);
388 if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "negate")) run_benchmark("scalar_negate", bench_scalar_negate, bench_setup, NULL, &data, 10, iters*100);
389 if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "mul")) run_benchmark("scalar_mul", bench_scalar_mul, bench_setup, NULL, &data, 10, iters*10);
390 if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "split")) run_benchmark("scalar_split", bench_scalar_split, bench_setup, NULL, &data, 10, iters);
391 if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "inverse")) run_benchmark("scalar_inverse", bench_scalar_inverse, bench_setup, NULL, &data, 10, iters);
392 if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "inverse")) run_benchmark("scalar_inverse_var", bench_scalar_inverse_var, bench_setup, NULL, &data, 10, iters);
393
394 if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "half")) run_benchmark("field_half", bench_field_half, bench_setup, NULL, &data, 10, iters*100);
395 if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "normalize")) run_benchmark("field_normalize", bench_field_normalize, bench_setup, NULL, &data, 10, iters*100);
396 if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "normalize")) run_benchmark("field_normalize_weak", bench_field_normalize_weak, bench_setup, NULL, &data, 10, iters*100);
397 if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "sqr")) run_benchmark("field_sqr", bench_field_sqr, bench_setup, NULL, &data, 10, iters*10);
398 if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "mul")) run_benchmark("field_mul", bench_field_mul, bench_setup, NULL, &data, 10, iters*10);
399 if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse", bench_field_inverse, bench_setup, NULL, &data, 10, iters);
400 if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse_var", bench_field_inverse_var, bench_setup, NULL, &data, 10, iters);
401 if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "sqrt")) run_benchmark("field_sqrt", bench_field_sqrt, bench_setup, NULL, &data, 10, iters);
402
403 if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "double")) run_benchmark("group_double_var", bench_group_double_var, bench_setup, NULL, &data, 10, iters*10);
404 if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_var", bench_group_add_var, bench_setup, NULL, &data, 10, iters*10);
405 if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine", bench_group_add_affine, bench_setup, NULL, &data, 10, iters*10);
406 if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine_var", bench_group_add_affine_var, bench_setup, NULL, &data, 10, iters*10);
407 if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_zinv_var", bench_group_add_zinv_var, bench_setup, NULL, &data, 10, iters*10);
408 if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "jacobi")) run_benchmark("group_jacobi_var", bench_group_jacobi_var, bench_setup, NULL, &data, 10, iters);
409 if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "to_affine")) run_benchmark("group_to_affine_var", bench_group_to_affine_var, bench_setup, NULL, &data, 10, iters);
410
411 if (d || have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("wnaf_const", bench_wnaf_const, bench_setup, NULL, &data, 10, iters);
412 if (d || have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("ecmult_wnaf", bench_ecmult_wnaf, bench_setup, NULL, &data, 10, iters);
413
414 if (d || have_flag(argc, argv, "hash") || have_flag(argc, argv, "sha256")) run_benchmark("hash_sha256", bench_sha256, bench_setup, NULL, &data, 10, iters);
415 if (d || have_flag(argc, argv, "hash") || have_flag(argc, argv, "hmac")) run_benchmark("hash_hmac_sha256", bench_hmac_sha256, bench_setup, NULL, &data, 10, iters);
416 if (d || have_flag(argc, argv, "hash") || have_flag(argc, argv, "rng6979")) run_benchmark("hash_rfc6979_hmac_sha256", bench_rfc6979_hmac_sha256, bench_setup, NULL, &data, 10, iters);
417
418 if (d || have_flag(argc, argv, "context") || have_flag(argc, argv, "verify")) run_benchmark("context_verify", bench_context_verify, bench_setup, NULL, &data, 10, 1 + iters/1000);
419 if (d || have_flag(argc, argv, "context") || have_flag(argc, argv, "sign")) run_benchmark("context_sign", bench_context_sign, bench_setup, NULL, &data, 10, 1 + iters/100);
420
421 return 0;
422}
void bench_field_inverse(void *arg, int iters)
void bench_scalar_negate(void *arg, int iters)
void bench_scalar_inverse_var(void *arg, int iters)
void bench_field_normalize(void *arg, int iters)
void bench_sha256(void *arg, int iters)
void bench_field_half(void *arg, int iters)
int main(int argc, char **argv)
void bench_hmac_sha256(void *arg, int iters)
void bench_scalar_split(void *arg, int iters)
void bench_field_normalize_weak(void *arg, int iters)
void bench_group_add_zinv_var(void *arg, int iters)
void bench_field_sqrt(void *arg, int iters)
void bench_context_verify(void *arg, int iters)
void bench_wnaf_const(void *arg, int iters)
void bench_ecmult_wnaf(void *arg, int iters)
void bench_scalar_inverse(void *arg, int iters)
void bench_group_double_var(void *arg, int iters)
void bench_context_sign(void *arg, int iters)
void bench_group_jacobi_var(void *arg, int iters)
void bench_field_inverse_var(void *arg, int iters)
void bench_scalar_add(void *arg, int iters)
void bench_scalar_mul(void *arg, int iters)
void bench_group_add_affine_var(void *arg, int iters)
void bench_field_mul(void *arg, int iters)
void bench_group_to_affine_var(void *arg, int iters)
void bench_rfc6979_hmac_sha256(void *arg, int iters)
void bench_group_add_var(void *arg, int iters)
void bench_field_sqr(void *arg, int iters)
void bench_setup(void *arg)
void bench_group_add_affine(void *arg, int iters)
static int secp256k1_wnaf_const(int *wnaf, const secp256k1_scalar *scalar, int w, int size)
Convert a number to WNAF notation.
static int secp256k1_ecmult_wnaf(int *wnaf, int len, const secp256k1_scalar *a, int w)
Convert a number to WNAF notation.
Definition: ecmult_impl.h:159
#define WINDOW_A
Definition: ecmult_impl.h:32
static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a)
Potentially faster version of secp256k1_fe_inv, without constant-time guarantee.
static void secp256k1_fe_normalize_weak(secp256k1_fe *r)
Weakly normalize a field element: reduce its magnitude to 1, but don't fully normalize.
static int secp256k1_fe_sqrt(secp256k1_fe *r, const secp256k1_fe *a)
If a has a square root, it is computed in r and 1 is returned.
static void secp256k1_fe_normalize_var(secp256k1_fe *r)
Normalize a field element, without constant-time guarantee.
static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a)
Sets a field element to be the (modular) inverse of another.
static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe *SECP256K1_RESTRICT b)
Sets a field element to be the product of two others.
static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a)
Set a field element equal to 32-byte big endian value.
static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a)
Sets a field element to be the square of another.
static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a)
Adds a field element to another.
static void secp256k1_fe_normalize(secp256k1_fe *r)
Normalize a field element.
static void secp256k1_fe_half(secp256k1_fe *r)
Halves the value of a field element modulo the field prime.
static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr)
Set r equal to the double of a.
static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv)
Set r equal to the sum of a and b (with the inverse of b's Z coordinate passed as bzinv).
static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd)
Set a group element (affine) equal to the point with the given X coordinate, and given oddness for Y.
static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr)
Set r equal to the sum of a and b (with b given in affine coordinates).
static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b)
Set r equal to the sum of a and b (with b given in affine coordinates, and not infinity).
static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr)
Set r equal to the sum of a and b.
static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *b)
Rescale a jacobian point by b which must be non-zero.
static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a)
Set a group element (jacobian) equal to another which is given in affine coordinates.
static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a)
Set a group element equal to another which is given in jacobian coordinates.
static int secp256k1_gej_has_quad_y_var(const secp256k1_gej *a)
Check whether a group element's y coordinate is a quadratic residue.
Definition: common.cpp:21
static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *bin, int *overflow)
Set a scalar from a big endian byte array.
static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *a)
Compute the inverse of a scalar (modulo the group order), without constant-time guarantee.
static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
Add two scalars together (modulo the group order).
static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
Multiply two scalars (modulo the group order).
static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a)
Compute the complement of a scalar (modulo the group order).
static void secp256k1_scalar_split_lambda(secp256k1_scalar *SECP256K1_RESTRICT r1, secp256k1_scalar *SECP256K1_RESTRICT r2, const secp256k1_scalar *SECP256K1_RESTRICT k)
Find r1 and r2 such that r1+r2*lambda = k, where r1 and r2 or their negations are maximum 128 bits lo...
static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *a)
Compute the inverse of a scalar (modulo the group order).
void print_output_table_header_row(void)
Definition: bench.h:163
int have_flag(int argc, char **argv, char *flag)
Definition: bench.h:116
int get_iters(int default_iters)
Definition: bench.h:154
void run_benchmark(char *name, void(*benchmark)(void *, int), void(*setup)(void *), void(*teardown)(void *, int), void *data, int count, int iter)
Definition: bench.h:82
static void secp256k1_sha256_initialize(secp256k1_sha256 *hash)
static void secp256k1_rfc6979_hmac_sha256_generate(secp256k1_rfc6979_hmac_sha256 *rng, unsigned char *out, size_t outlen)
static void secp256k1_hmac_sha256_finalize(secp256k1_hmac_sha256 *hash, unsigned char *out32)
static void secp256k1_hmac_sha256_initialize(secp256k1_hmac_sha256 *hash, const unsigned char *key, size_t size)
static void secp256k1_sha256_finalize(secp256k1_sha256 *hash, unsigned char *out32)
static void secp256k1_rfc6979_hmac_sha256_initialize(secp256k1_rfc6979_hmac_sha256 *rng, const unsigned char *key, size_t keylen)
static void secp256k1_hmac_sha256_write(secp256k1_hmac_sha256 *hash, const unsigned char *data, size_t size)
static void secp256k1_sha256_write(secp256k1_sha256 *hash, const unsigned char *data, size_t size)
#define CHECK(cond)
Definition: util.h:85
SECP256K1_API void secp256k1_context_destroy(secp256k1_context *ctx) SECP256K1_ARG_NONNULL(1)
Destroy a secp256k1 context object (created in dynamically allocated memory).
Definition: secp256k1.c:157
#define SECP256K1_CONTEXT_SIGN
Definition: secp256k1.h:200
SECP256K1_API secp256k1_context * secp256k1_context_create(unsigned int flags) SECP256K1_WARN_UNUSED_RESULT
Create a secp256k1 context object (in dynamically allocated memory).
Definition: secp256k1.c:118
#define SECP256K1_CONTEXT_VERIFY
Flags to pass to secp256k1_context_create, secp256k1_context_preallocated_size, and secp256k1_context...
Definition: secp256k1.h:199
secp256k1_ge ge[2]
secp256k1_gej gej[2]
int wnaf[256]
secp256k1_scalar scalar[2]
unsigned char data[64]
secp256k1_fe fe[4]
A group element in affine coordinates on the secp256k1 curve, or occasionally on an isomorphic curve ...
Definition: group.h:16
secp256k1_fe x
Definition: group.h:17
secp256k1_fe y
Definition: group.h:18
A group element of the secp256k1 curve, in jacobian coordinates.
Definition: group.h:28
secp256k1_fe y
Definition: group.h:30
secp256k1_fe x
Definition: group.h:29
secp256k1_fe z
Definition: group.h:31
A scalar modulo the group order of the secp256k1 curve.
Definition: scalar_4x64.h:13