Bitcoin ABC 0.30.7
P2P Digital Currency
netaddress.cpp
Go to the documentation of this file.
1// Copyright (c) 2009-2010 Satoshi Nakamoto
2// Copyright (c) 2009-2016 The Bitcoin Core developers
3// Distributed under the MIT software license, see the accompanying
4// file COPYING or http://www.opensource.org/licenses/mit-license.php.
5
6#include <netaddress.h>
7
8#include <crypto/common.h>
9#include <crypto/sha3.h>
10#include <hash.h>
11#include <prevector.h>
12#include <util/asmap.h>
13#include <util/strencodings.h>
14#include <util/string.h>
15
16#include <tinyformat.h>
17
18#include <algorithm>
19#include <array>
20#include <cstdint>
21#include <ios>
22#include <iterator>
23#include <tuple>
24
25constexpr size_t CNetAddr::V1_SERIALIZATION_SIZE;
26constexpr size_t CNetAddr::MAX_ADDRV2_SIZE;
27
29 switch (m_net) {
30 case NET_IPV4:
32 case NET_IPV6:
34 case NET_ONION:
35 switch (m_addr.size()) {
36 case ADDR_TORV2_SIZE:
37 return BIP155Network::TORV2;
38 case ADDR_TORV3_SIZE:
39 return BIP155Network::TORV3;
40 default:
41 assert(false);
42 }
43 case NET_I2P:
44 return BIP155Network::I2P;
45 case NET_CJDNS:
46 return BIP155Network::CJDNS;
47 case NET_INTERNAL:
48 // should have been handled before calling this function
49 case NET_UNROUTABLE:
50 // m_net is never and should not be set to NET_UNROUTABLE
51 case NET_MAX:
52 // m_net is never and should not be set to NET_MAX
53 assert(false);
54 } // no default case, so the compiler can warn about missing cases
55
56 assert(false);
57}
58
59bool CNetAddr::SetNetFromBIP155Network(uint8_t possible_bip155_net,
60 size_t address_size) {
61 switch (possible_bip155_net) {
63 if (address_size == ADDR_IPV4_SIZE) {
65 return true;
66 }
67 throw std::ios_base::failure(
68 strprintf("BIP155 IPv4 address with length %u (should be %u)",
69 address_size, ADDR_IPV4_SIZE));
71 if (address_size == ADDR_IPV6_SIZE) {
73 return true;
74 }
75 throw std::ios_base::failure(
76 strprintf("BIP155 IPv6 address with length %u (should be %u)",
77 address_size, ADDR_IPV6_SIZE));
78 case BIP155Network::TORV2:
79 if (address_size == ADDR_TORV2_SIZE) {
81 return true;
82 }
83 throw std::ios_base::failure(
84 strprintf("BIP155 TORv2 address with length %u (should be %u)",
85 address_size, ADDR_TORV2_SIZE));
86 case BIP155Network::TORV3:
87 if (address_size == ADDR_TORV3_SIZE) {
89 return true;
90 }
91 throw std::ios_base::failure(
92 strprintf("BIP155 TORv3 address with length %u (should be %u)",
93 address_size, ADDR_TORV3_SIZE));
95 if (address_size == ADDR_I2P_SIZE) {
96 m_net = NET_I2P;
97 return true;
98 }
99 throw std::ios_base::failure(
100 strprintf("BIP155 I2P address with length %u (should be %u)",
101 address_size, ADDR_I2P_SIZE));
102 case BIP155Network::CJDNS:
103 if (address_size == ADDR_CJDNS_SIZE) {
105 return true;
106 }
107 throw std::ios_base::failure(
108 strprintf("BIP155 CJDNS address with length %u (should be %u)",
109 address_size, ADDR_CJDNS_SIZE));
110 }
111
112 // Don't throw on addresses with unknown network ids (maybe from the
113 // future). Instead silently drop them and have the unserialization code
114 // consume subsequent ones which may be known to us.
115 return false;
116}
117
124
125void CNetAddr::SetIP(const CNetAddr &ipIn) {
126 // Size check.
127 switch (ipIn.m_net) {
128 case NET_IPV4:
129 assert(ipIn.m_addr.size() == ADDR_IPV4_SIZE);
130 break;
131 case NET_IPV6:
132 assert(ipIn.m_addr.size() == ADDR_IPV6_SIZE);
133 break;
134 case NET_ONION:
135 assert(ipIn.m_addr.size() == ADDR_TORV2_SIZE ||
136 ipIn.m_addr.size() == ADDR_TORV3_SIZE);
137 break;
138 case NET_I2P:
139 assert(ipIn.m_addr.size() == ADDR_I2P_SIZE);
140 break;
141 case NET_CJDNS:
143 break;
144 case NET_INTERNAL:
146 break;
147 case NET_UNROUTABLE:
148 case NET_MAX:
149 assert(false);
150 } // no default case, so the compiler can warn about missing cases
151
152 m_net = ipIn.m_net;
153 m_addr = ipIn.m_addr;
154}
155
157 assert(ipv6.size() == ADDR_IPV6_SIZE);
158
159 size_t skip{0};
160
161 if (HasPrefix(ipv6, IPV4_IN_IPV6_PREFIX)) {
162 // IPv4-in-IPv6
163 m_net = NET_IPV4;
164 skip = sizeof(IPV4_IN_IPV6_PREFIX);
165 } else if (HasPrefix(ipv6, TORV2_IN_IPV6_PREFIX)) {
166 // TORv2-in-IPv6
168 skip = sizeof(TORV2_IN_IPV6_PREFIX);
169 } else if (HasPrefix(ipv6, INTERNAL_IN_IPV6_PREFIX)) {
170 // Internal-in-IPv6
172 skip = sizeof(INTERNAL_IN_IPV6_PREFIX);
173 } else {
174 // IPv6
175 m_net = NET_IPV6;
176 }
177
178 m_addr.assign(ipv6.begin() + skip, ipv6.end());
179}
180
188bool CNetAddr::SetInternal(const std::string &name) {
189 if (name.empty()) {
190 return false;
191 }
193 uint8_t hash[32] = {};
194 CSHA256().Write((const uint8_t *)name.data(), name.size()).Finalize(hash);
195 m_addr.assign(hash, hash + ADDR_INTERNAL_SIZE);
196 return true;
197}
198
199namespace torv3 {
200// https://gitweb.torproject.org/torspec.git/tree/rend-spec-v3.txt#n2135
201static constexpr size_t CHECKSUM_LEN = 2;
202static const uint8_t VERSION[] = {3};
203static constexpr size_t TOTAL_LEN =
205
206static void Checksum(Span<const uint8_t> addr_pubkey,
207 uint8_t (&checksum)[CHECKSUM_LEN]) {
208 // TORv3 CHECKSUM = H(".onion checksum" | PUBKEY | VERSION)[:2]
209 static const uint8_t prefix[] = ".onion checksum";
210 static constexpr size_t prefix_len = 15;
211
212 SHA3_256 hasher;
213
214 hasher.Write(Span{prefix}.first(prefix_len));
215 hasher.Write(addr_pubkey);
216 hasher.Write(VERSION);
217
218 uint8_t checksum_full[SHA3_256::OUTPUT_SIZE];
219
220 hasher.Finalize(checksum_full);
221
222 memcpy(checksum, checksum_full, sizeof(checksum));
223}
224
225}; // namespace torv3
226
227bool CNetAddr::SetSpecial(const std::string &addr) {
228 if (!ContainsNoNUL(addr)) {
229 return false;
230 }
231
232 if (SetTor(addr)) {
233 return true;
234 }
235
236 if (SetI2P(addr)) {
237 return true;
238 }
239
240 return false;
241}
242
243bool CNetAddr::SetTor(const std::string &addr) {
244 static const char *suffix{".onion"};
245 static constexpr size_t suffix_len{6};
246
247 if (addr.size() <= suffix_len ||
248 addr.substr(addr.size() - suffix_len) != suffix) {
249 return false;
250 }
251
252 auto input = DecodeBase32(
253 std::string_view{addr}.substr(0, addr.size() - suffix_len));
254
255 if (!input) {
256 return false;
257 }
258
259 switch (input->size()) {
260 case ADDR_TORV2_SIZE:
262 m_addr.assign(input->begin(), input->end());
263 return true;
264 case torv3::TOTAL_LEN: {
265 Span<const uint8_t> input_pubkey{input->data(), ADDR_TORV3_SIZE};
266 Span<const uint8_t> input_checksum{input->data() + ADDR_TORV3_SIZE,
268 Span<const uint8_t> input_version{input->data() + ADDR_TORV3_SIZE +
270 sizeof(torv3::VERSION)};
271
272 if (input_version != torv3::VERSION) {
273 return false;
274 }
275
276 uint8_t calculated_checksum[torv3::CHECKSUM_LEN];
277 torv3::Checksum(input_pubkey, calculated_checksum);
278
279 if (input_checksum != calculated_checksum) {
280 return false;
281 }
282
284 m_addr.assign(input_pubkey.begin(), input_pubkey.end());
285 return true;
286 }
287 }
288
289 return false;
290}
291
292bool CNetAddr::SetI2P(const std::string &addr) {
293 // I2P addresses that we support consist of 52 base32 characters +
294 // ".b32.i2p".
295 static constexpr size_t b32_len{52};
296 static const char *suffix{".b32.i2p"};
297 static constexpr size_t suffix_len{8};
298
299 if (addr.size() != b32_len + suffix_len ||
300 ToLower(addr.substr(b32_len)) != suffix) {
301 return false;
302 }
303
304 // Remove the ".b32.i2p" suffix and pad to a multiple of 8 chars, so
305 // DecodeBase32() can decode it.
306 const std::string b32_padded = addr.substr(0, b32_len) + "====";
307
308 auto address_bytes = DecodeBase32(b32_padded);
309
310 if (!address_bytes || address_bytes->size() != ADDR_I2P_SIZE) {
311 return false;
312 }
313
314 m_net = NET_I2P;
315 m_addr.assign(address_bytes->begin(), address_bytes->end());
316
317 return true;
318}
319
320CNetAddr::CNetAddr(const struct in_addr &ipv4Addr) {
321 m_net = NET_IPV4;
322 const uint8_t *ptr = reinterpret_cast<const uint8_t *>(&ipv4Addr);
323 m_addr.assign(ptr, ptr + ADDR_IPV4_SIZE);
324}
325
326CNetAddr::CNetAddr(const struct in6_addr &ipv6Addr, const uint32_t scope) {
328 {reinterpret_cast<const uint8_t *>(&ipv6Addr), sizeof(ipv6Addr)});
329 m_scope_id = scope;
330}
331
333 if (!IsIPv4() && !IsIPv6()) {
334 return false;
335 }
336 return std::all_of(m_addr.begin(), m_addr.end(),
337 [](uint8_t b) { return b == 0; });
338}
339
340bool CNetAddr::IsIPv4() const {
341 return m_net == NET_IPV4;
342}
343
344bool CNetAddr::IsIPv6() const {
345 return m_net == NET_IPV6;
346}
347
349 return IsIPv4() &&
350 (m_addr[0] == 10 || (m_addr[0] == 192 && m_addr[1] == 168) ||
351 (m_addr[0] == 172 && m_addr[1] >= 16 && m_addr[1] <= 31));
352}
353
355 return IsIPv4() && m_addr[0] == 198 && (m_addr[1] == 18 || m_addr[1] == 19);
356}
357
359 return IsIPv4() && HasPrefix(m_addr, std::array<uint8_t, 2>{{169, 254}});
360}
361
363 return IsIPv4() && m_addr[0] == 100 && m_addr[1] >= 64 && m_addr[1] <= 127;
364}
365
367 return IsIPv4() &&
368 (HasPrefix(m_addr, std::array<uint8_t, 3>{{192, 0, 2}}) ||
369 HasPrefix(m_addr, std::array<uint8_t, 3>{{198, 51, 100}}) ||
370 HasPrefix(m_addr, std::array<uint8_t, 3>{{203, 0, 113}}));
371}
372
374 return IsIPv6() &&
375 HasPrefix(m_addr, std::array<uint8_t, 4>{{0x20, 0x01, 0x0D, 0xB8}});
376}
377
379 return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 2>{{0x20, 0x02}});
380}
381
383 return IsIPv6() &&
384 HasPrefix(m_addr, std::array<uint8_t, 12>{{0x00, 0x64, 0xFF, 0x9B,
385 0x00, 0x00, 0x00, 0x00,
386 0x00, 0x00, 0x00, 0x00}});
387}
388
390 return IsIPv6() &&
391 HasPrefix(m_addr, std::array<uint8_t, 4>{{0x20, 0x01, 0x00, 0x00}});
392}
393
395 return IsIPv6() &&
396 HasPrefix(m_addr, std::array<uint8_t, 8>{{0xFE, 0x80, 0x00, 0x00,
397 0x00, 0x00, 0x00, 0x00}});
398}
399
401 return IsIPv6() && (m_addr[0] & 0xFE) == 0xFC;
402}
403
405 return IsIPv6() &&
406 HasPrefix(m_addr, std::array<uint8_t, 12>{{0x00, 0x00, 0x00, 0x00,
407 0x00, 0x00, 0x00, 0x00,
408 0xFF, 0xFF, 0x00, 0x00}});
409}
410
412 return IsIPv6() &&
413 HasPrefix(m_addr, std::array<uint8_t, 3>{{0x20, 0x01, 0x00}}) &&
414 (m_addr[3] & 0xF0) == 0x10;
415}
416
418 return IsIPv6() &&
419 HasPrefix(m_addr, std::array<uint8_t, 3>{{0x20, 0x01, 0x00}}) &&
420 (m_addr[3] & 0xF0) == 0x20;
421}
422
423bool CNetAddr::IsHeNet() const {
424 return IsIPv6() &&
425 HasPrefix(m_addr, std::array<uint8_t, 4>{{0x20, 0x01, 0x04, 0x70}});
426}
427
433bool CNetAddr::IsTor() const {
434 return m_net == NET_ONION;
435}
436
440bool CNetAddr::IsI2P() const {
441 return m_net == NET_I2P;
442}
443
447bool CNetAddr::IsCJDNS() const {
448 return m_net == NET_CJDNS;
449}
450
451bool CNetAddr::IsLocal() const {
452 // IPv4 loopback (127.0.0.0/8 or 0.0.0.0/8)
453 if (IsIPv4() && (m_addr[0] == 127 || m_addr[0] == 0)) {
454 return true;
455 }
456
457 // IPv6 loopback (::1/128)
458 static const uint8_t pchLocal[16] = {0, 0, 0, 0, 0, 0, 0, 0,
459 0, 0, 0, 0, 0, 0, 0, 1};
460 if (IsIPv6() && memcmp(m_addr.data(), pchLocal, sizeof(pchLocal)) == 0) {
461 return true;
462 }
463
464 return false;
465}
466
477bool CNetAddr::IsValid() const {
478 // unspecified IPv6 address (::/128)
479 uint8_t ipNone6[16] = {};
480 if (IsIPv6() && memcmp(m_addr.data(), ipNone6, sizeof(ipNone6)) == 0) {
481 return false;
482 }
483
484 // documentation IPv6 address
485 if (IsRFC3849()) {
486 return false;
487 }
488
489 if (IsInternal()) {
490 return false;
491 }
492
493 if (IsIPv4()) {
494 const uint32_t addr = ReadBE32(m_addr.data());
495 if (addr == INADDR_ANY || addr == INADDR_NONE) {
496 return false;
497 }
498 }
499
500 return true;
501}
502
513 return IsValid() &&
514 !(IsRFC1918() || IsRFC2544() || IsRFC3927() || IsRFC4862() ||
515 IsRFC6598() || IsRFC5737() || (IsRFC4193() && !IsTor()) ||
516 IsRFC4843() || IsRFC7343() || IsLocal() || IsInternal());
517}
518
525 return m_net == NET_INTERNAL;
526}
527
529 switch (m_net) {
530 case NET_IPV4:
531 case NET_IPV6:
532 case NET_INTERNAL:
533 return true;
534 case NET_ONION:
535 return m_addr.size() == ADDR_TORV2_SIZE;
536 case NET_I2P:
537 case NET_CJDNS:
538 return false;
539 case NET_UNROUTABLE:
540 // m_net is never and should not be set to NET_UNROUTABLE
541 case NET_MAX:
542 // m_net is never and should not be set to NET_MAX
543 assert(false);
544 } // no default case, so the compiler can warn about missing cases
545
546 assert(false);
547}
548
550 if (IsInternal()) {
551 return NET_INTERNAL;
552 }
553
554 if (!IsRoutable()) {
555 return NET_UNROUTABLE;
556 }
557
558 return m_net;
559}
560
561static std::string IPv4ToString(Span<const uint8_t> a) {
562 return strprintf("%u.%u.%u.%u", a[0], a[1], a[2], a[3]);
563}
564
568static std::string IPv6ToString(Span<const uint8_t> a, uint32_t scope_id) {
569 assert(a.size() == ADDR_IPV6_SIZE);
570 const std::array<uint16_t, 8> groups{{
571 ReadBE16(&a[0]),
572 ReadBE16(&a[2]),
573 ReadBE16(&a[4]),
574 ReadBE16(&a[6]),
575 ReadBE16(&a[8]),
576 ReadBE16(&a[10]),
577 ReadBE16(&a[12]),
578 ReadBE16(&a[14]),
579 }};
580
581 // The zero compression implementation is inspired by Rust's
582 // std::net::Ipv6Addr, see
583 // https://github.com/rust-lang/rust/blob/cc4103089f40a163f6d143f06359cba7043da29b/library/std/src/net/ip.rs#L1635-L1683
584 struct ZeroSpan {
585 size_t start_index{0};
586 size_t len{0};
587 };
588
589 // Find longest sequence of consecutive all-zero fields. Use first zero
590 // sequence if two or more zero sequences of equal length are found.
591 ZeroSpan longest, current;
592 for (size_t i{0}; i < groups.size(); ++i) {
593 if (groups[i] != 0) {
594 current = {i + 1, 0};
595 continue;
596 }
597 current.len += 1;
598 if (current.len > longest.len) {
599 longest = current;
600 }
601 }
602
603 std::string r;
604 r.reserve(39);
605 for (size_t i{0}; i < groups.size(); ++i) {
606 // Replace the longest sequence of consecutive all-zero fields with
607 // two colons ("::").
608 if (longest.len >= 2 && i >= longest.start_index &&
609 i < longest.start_index + longest.len) {
610 if (i == longest.start_index) {
611 r += "::";
612 }
613 continue;
614 }
615 r += strprintf("%s%x", ((!r.empty() && r.back() != ':') ? ":" : ""),
616 groups[i]);
617 }
618
619 if (scope_id != 0) {
620 r += strprintf("%%%u", scope_id);
621 }
622
623 return r;
624}
625
626std::string CNetAddr::ToStringIP() const {
627 switch (m_net) {
628 case NET_IPV4:
629 return IPv4ToString(m_addr);
630 case NET_IPV6:
632 case NET_ONION:
633 switch (m_addr.size()) {
634 case ADDR_TORV2_SIZE:
635 return EncodeBase32(m_addr) + ".onion";
636 case ADDR_TORV3_SIZE: {
637 uint8_t checksum[torv3::CHECKSUM_LEN];
638 torv3::Checksum(m_addr, checksum);
639
640 // TORv3 onion_address = base32(PUBKEY | CHECKSUM | VERSION)
641 // + ".onion"
643 m_addr.end()};
644 address.insert(address.end(), checksum,
645 checksum + torv3::CHECKSUM_LEN);
646 address.insert(address.end(), torv3::VERSION,
648
649 return EncodeBase32(address) + ".onion";
650 }
651 default:
652 assert(false);
653 }
654 case NET_I2P:
655 return EncodeBase32(m_addr, false /* don't pad with = */) +
656 ".b32.i2p";
657 case NET_CJDNS:
658 return IPv6ToString(m_addr, 0);
659 case NET_INTERNAL:
660 return EncodeBase32(m_addr) + ".internal";
661 case NET_UNROUTABLE:
662 // m_net is never and should not be set to NET_UNROUTABLE
663 case NET_MAX:
664 // m_net is never and should not be set to NET_MAX
665 assert(false);
666 } // no default case, so the compiler can warn about missing cases
667
668 assert(false);
669}
670
671std::string CNetAddr::ToString() const {
672 return ToStringIP();
673}
674
675bool operator==(const CNetAddr &a, const CNetAddr &b) {
676 return a.m_net == b.m_net && a.m_addr == b.m_addr;
677}
678
679bool operator<(const CNetAddr &a, const CNetAddr &b) {
680 return std::tie(a.m_net, a.m_addr) < std::tie(b.m_net, b.m_addr);
681}
682
693bool CNetAddr::GetInAddr(struct in_addr *pipv4Addr) const {
694 if (!IsIPv4()) {
695 return false;
696 }
697 assert(sizeof(*pipv4Addr) == m_addr.size());
698 memcpy(pipv4Addr, m_addr.data(), m_addr.size());
699 return true;
700}
701
712bool CNetAddr::GetIn6Addr(struct in6_addr *pipv6Addr) const {
713 if (!IsIPv6()) {
714 return false;
715 }
716 assert(sizeof(*pipv6Addr) == m_addr.size());
717 memcpy(pipv6Addr, m_addr.data(), m_addr.size());
718 return true;
719}
720
722 return IsRoutable() && (IsIPv4() || IsRFC6145() || IsRFC6052() ||
723 IsRFC3964() || IsRFC4380());
724}
725
726uint32_t CNetAddr::GetLinkedIPv4() const {
727 if (IsIPv4()) {
728 return ReadBE32(m_addr.data());
729 } else if (IsRFC6052() || IsRFC6145()) {
730 // mapped IPv4, SIIT translated IPv4: the IPv4 address is the last 4
731 // bytes of the address
732 return ReadBE32(Span{m_addr}.last(ADDR_IPV4_SIZE).data());
733 } else if (IsRFC3964()) {
734 // 6to4 tunneled IPv4: the IPv4 address is in bytes 2-6
735 return ReadBE32(Span{m_addr}.subspan(2, ADDR_IPV4_SIZE).data());
736 } else if (IsRFC4380()) {
737 // Teredo tunneled IPv4: the IPv4 address is in the last 4 bytes of the
738 // address, but bitflipped
739 return ~ReadBE32(Span{m_addr}.last(ADDR_IPV4_SIZE).data());
740 }
741 assert(false);
742}
743
745 // Make sure that if we return NET_IPV6, then IsIPv6() is true. The callers
746 // expect that.
747
748 // Check for "internal" first because such addresses are also !IsRoutable()
749 // and we don't want to return NET_UNROUTABLE in that case.
750 if (IsInternal()) {
751 return NET_INTERNAL;
752 }
753 if (!IsRoutable()) {
754 return NET_UNROUTABLE;
755 }
756 if (HasLinkedIPv4()) {
757 return NET_IPV4;
758 }
759 return m_net;
760}
761
762uint32_t CNetAddr::GetMappedAS(const std::vector<bool> &asmap) const {
763 uint32_t net_class = GetNetClass();
764 if (asmap.size() == 0 || (net_class != NET_IPV4 && net_class != NET_IPV6)) {
765 return 0; // Indicates not found, safe because AS0 is reserved per
766 // RFC7607.
767 }
768 std::vector<bool> ip_bits(128);
769 if (HasLinkedIPv4()) {
770 // For lookup, treat as if it was just an IPv4 address
771 // (IPV4_IN_IPV6_PREFIX + IPv4 bits)
772 for (int8_t byte_i = 0; byte_i < 12; ++byte_i) {
773 for (uint8_t bit_i = 0; bit_i < 8; ++bit_i) {
774 ip_bits[byte_i * 8 + bit_i] =
775 (IPV4_IN_IPV6_PREFIX[byte_i] >> (7 - bit_i)) & 1;
776 }
777 }
778 uint32_t ipv4 = GetLinkedIPv4();
779 for (int i = 0; i < 32; ++i) {
780 ip_bits[96 + i] = (ipv4 >> (31 - i)) & 1;
781 }
782 } else {
783 // Use all 128 bits of the IPv6 address otherwise
784 assert(IsIPv6());
785 for (int8_t byte_i = 0; byte_i < 16; ++byte_i) {
786 uint8_t cur_byte = m_addr[byte_i];
787 for (uint8_t bit_i = 0; bit_i < 8; ++bit_i) {
788 ip_bits[byte_i * 8 + bit_i] = (cur_byte >> (7 - bit_i)) & 1;
789 }
790 }
791 }
792 uint32_t mapped_as = Interpret(asmap, ip_bits);
793 return mapped_as;
794}
795
806std::vector<uint8_t> CNetAddr::GetGroup(const std::vector<bool> &asmap) const {
807 std::vector<uint8_t> vchRet;
808 uint32_t net_class = GetNetClass();
809 // If non-empty asmap is supplied and the address is IPv4/IPv6,
810 // return ASN to be used for bucketing.
811 uint32_t asn = GetMappedAS(asmap);
812 if (asn != 0) { // Either asmap was empty, or address has non-asmappable net
813 // class (e.g. TOR).
814 vchRet.push_back(NET_IPV6); // IPv4 and IPv6 with same ASN should be in
815 // the same bucket
816 for (int i = 0; i < 4; i++) {
817 vchRet.push_back((asn >> (8 * i)) & 0xFF);
818 }
819 return vchRet;
820 }
821
822 vchRet.push_back(net_class);
823 int nBits{0};
824
825 if (IsLocal()) {
826 // all local addresses belong to the same group
827 } else if (IsInternal()) {
828 // all internal-usage addresses get their own group
829 nBits = ADDR_INTERNAL_SIZE * 8;
830 } else if (!IsRoutable()) {
831 // all other unroutable addresses belong to the same group
832 } else if (HasLinkedIPv4()) {
833 // IPv4 addresses (and mapped IPv4 addresses) use /16 groups
834 uint32_t ipv4 = GetLinkedIPv4();
835 vchRet.push_back((ipv4 >> 24) & 0xFF);
836 vchRet.push_back((ipv4 >> 16) & 0xFF);
837 return vchRet;
838 } else if (IsTor() || IsI2P() || IsCJDNS()) {
839 nBits = 4;
840 } else if (IsHeNet()) {
841 // for he.net, use /36 groups
842 nBits = 36;
843 } else {
844 // for the rest of the IPv6 network, use /32 groups
845 nBits = 32;
846 }
847
848 // Push our address onto vchRet.
849 const size_t num_bytes = nBits / 8;
850 vchRet.insert(vchRet.end(), m_addr.begin(), m_addr.begin() + num_bytes);
851 nBits %= 8;
852 // ...for the last byte, push nBits and for the rest of the byte push 1's
853 if (nBits > 0) {
854 assert(num_bytes < m_addr.size());
855 vchRet.push_back(m_addr[num_bytes] | ((1 << (8 - nBits)) - 1));
856 }
857
858 return vchRet;
859}
860
861std::vector<uint8_t> CNetAddr::GetAddrBytes() const {
862 if (IsAddrV1Compatible()) {
863 uint8_t serialized[V1_SERIALIZATION_SIZE];
864 SerializeV1Array(serialized);
865 return {std::begin(serialized), std::end(serialized)};
866 }
867 return std::vector<uint8_t>(m_addr.begin(), m_addr.end());
868}
869
870// private extensions to enum Network, only returned by GetExtNetwork, and only
871// used in GetReachabilityFrom
872static const int NET_UNKNOWN = NET_MAX + 0;
873static const int NET_TEREDO = NET_MAX + 1;
874static int GetExtNetwork(const CNetAddr *addr) {
875 if (addr == nullptr) {
876 return NET_UNKNOWN;
877 }
878 if (addr->IsRFC4380()) {
879 return NET_TEREDO;
880 }
881 return addr->GetNetwork();
882}
883
885int CNetAddr::GetReachabilityFrom(const CNetAddr *paddrPartner) const {
886 enum Reachability {
887 REACH_UNREACHABLE,
888 REACH_DEFAULT,
889 REACH_TEREDO,
890 REACH_IPV6_WEAK,
891 REACH_IPV4,
892 REACH_IPV6_STRONG,
893 REACH_PRIVATE
894 };
895
896 if (!IsRoutable() || IsInternal()) {
897 return REACH_UNREACHABLE;
898 }
899
900 int ourNet = GetExtNetwork(this);
901 int theirNet = GetExtNetwork(paddrPartner);
902 bool fTunnel = IsRFC3964() || IsRFC6052() || IsRFC6145();
903
904 switch (theirNet) {
905 case NET_IPV4:
906 switch (ourNet) {
907 default:
908 return REACH_DEFAULT;
909 case NET_IPV4:
910 return REACH_IPV4;
911 }
912 case NET_IPV6:
913 switch (ourNet) {
914 default:
915 return REACH_DEFAULT;
916 case NET_TEREDO:
917 return REACH_TEREDO;
918 case NET_IPV4:
919 return REACH_IPV4;
920 // only prefer giving our IPv6 address if it's not tunnelled
921 case NET_IPV6:
922 return fTunnel ? REACH_IPV6_WEAK : REACH_IPV6_STRONG;
923 }
924 case NET_ONION:
925 switch (ourNet) {
926 default:
927 return REACH_DEFAULT;
928 // Tor users can connect to IPv4 as well
929 case NET_IPV4:
930 return REACH_IPV4;
931 case NET_ONION:
932 return REACH_PRIVATE;
933 }
934 case NET_I2P:
935 switch (ourNet) {
936 case NET_I2P:
937 return REACH_PRIVATE;
938 default:
939 return REACH_DEFAULT;
940 }
941 case NET_TEREDO:
942 switch (ourNet) {
943 default:
944 return REACH_DEFAULT;
945 case NET_TEREDO:
946 return REACH_TEREDO;
947 case NET_IPV6:
948 return REACH_IPV6_WEAK;
949 case NET_IPV4:
950 return REACH_IPV4;
951 }
952 case NET_UNKNOWN:
953 case NET_UNROUTABLE:
954 default:
955 switch (ourNet) {
956 default:
957 return REACH_DEFAULT;
958 case NET_TEREDO:
959 return REACH_TEREDO;
960 case NET_IPV6:
961 return REACH_IPV6_WEAK;
962 case NET_IPV4:
963 return REACH_IPV4;
964 // either from Tor, or don't care about our address
965 case NET_ONION:
966 return REACH_PRIVATE;
967 }
968 }
969}
970
971CService::CService() : port(0) {}
972
973CService::CService(const CNetAddr &cip, uint16_t portIn)
974 : CNetAddr(cip), port(portIn) {}
975
976CService::CService(const struct in_addr &ipv4Addr, uint16_t portIn)
977 : CNetAddr(ipv4Addr), port(portIn) {}
978
979CService::CService(const struct in6_addr &ipv6Addr, uint16_t portIn)
980 : CNetAddr(ipv6Addr), port(portIn) {}
981
982CService::CService(const struct sockaddr_in &addr)
983 : CNetAddr(addr.sin_addr), port(ntohs(addr.sin_port)) {
984 assert(addr.sin_family == AF_INET);
985}
986
987CService::CService(const struct sockaddr_in6 &addr)
988 : CNetAddr(addr.sin6_addr, addr.sin6_scope_id),
989 port(ntohs(addr.sin6_port)) {
990 assert(addr.sin6_family == AF_INET6);
991}
992
993bool CService::SetSockAddr(const struct sockaddr *paddr) {
994 switch (paddr->sa_family) {
995 case AF_INET:
996 *this =
997 CService(*reinterpret_cast<const struct sockaddr_in *>(paddr));
998 return true;
999 case AF_INET6:
1000 *this =
1001 CService(*reinterpret_cast<const struct sockaddr_in6 *>(paddr));
1002 return true;
1003 default:
1004 return false;
1005 }
1006}
1007
1008uint16_t CService::GetPort() const {
1009 return port;
1010}
1011
1012bool operator==(const CService &a, const CService &b) {
1013 return static_cast<CNetAddr>(a) == static_cast<CNetAddr>(b) &&
1014 a.port == b.port;
1015}
1016
1017bool operator<(const CService &a, const CService &b) {
1018 return static_cast<CNetAddr>(a) < static_cast<CNetAddr>(b) ||
1019 (static_cast<CNetAddr>(a) == static_cast<CNetAddr>(b) &&
1020 a.port < b.port);
1021}
1022
1035bool CService::GetSockAddr(struct sockaddr *paddr, socklen_t *addrlen) const {
1036 if (IsIPv4()) {
1037 if (*addrlen < (socklen_t)sizeof(struct sockaddr_in)) {
1038 return false;
1039 }
1040 *addrlen = sizeof(struct sockaddr_in);
1041 struct sockaddr_in *paddrin =
1042 reinterpret_cast<struct sockaddr_in *>(paddr);
1043 memset(paddrin, 0, *addrlen);
1044 if (!GetInAddr(&paddrin->sin_addr)) {
1045 return false;
1046 }
1047 paddrin->sin_family = AF_INET;
1048 paddrin->sin_port = htons(port);
1049 return true;
1050 }
1051 if (IsIPv6()) {
1052 if (*addrlen < (socklen_t)sizeof(struct sockaddr_in6)) {
1053 return false;
1054 }
1055 *addrlen = sizeof(struct sockaddr_in6);
1056 struct sockaddr_in6 *paddrin6 =
1057 reinterpret_cast<struct sockaddr_in6 *>(paddr);
1058 memset(paddrin6, 0, *addrlen);
1059 if (!GetIn6Addr(&paddrin6->sin6_addr)) {
1060 return false;
1061 }
1062 paddrin6->sin6_scope_id = m_scope_id;
1063 paddrin6->sin6_family = AF_INET6;
1064 paddrin6->sin6_port = htons(port);
1065 return true;
1066 }
1067 return false;
1068}
1069
1073std::vector<uint8_t> CService::GetKey() const {
1074 auto key = GetAddrBytes();
1075 // most significant byte of our port
1076 key.push_back(port / 0x100);
1077 // least significant byte of our port
1078 key.push_back(port & 0x0FF);
1079 return key;
1080}
1081
1082std::string CService::ToStringPort() const {
1083 return strprintf("%u", port);
1084}
1085
1086std::string CService::ToStringIPPort() const {
1087 if (IsIPv4() || IsTor() || IsI2P() || IsInternal()) {
1088 return ToStringIP() + ":" + ToStringPort();
1089 } else {
1090 return "[" + ToStringIP() + "]:" + ToStringPort();
1091 }
1092}
1093
1094std::string CService::ToString() const {
1095 return ToStringIPPort();
1096}
1097
1098CSubNet::CSubNet() : valid(false) {
1099 memset(netmask, 0, sizeof(netmask));
1100}
1101
1102CSubNet::CSubNet(const CNetAddr &addr, uint8_t mask) : CSubNet() {
1103 valid = (addr.IsIPv4() && mask <= ADDR_IPV4_SIZE * 8) ||
1104 (addr.IsIPv6() && mask <= ADDR_IPV6_SIZE * 8);
1105 if (!valid) {
1106 return;
1107 }
1108
1109 assert(mask <= sizeof(netmask) * 8);
1110
1111 network = addr;
1112
1113 uint8_t n = mask;
1114 for (size_t i = 0; i < network.m_addr.size(); ++i) {
1115 const uint8_t bits = n < 8 ? n : 8;
1116 // Set first bits.
1117 netmask[i] = (uint8_t)((uint8_t)0xFF << (8 - bits));
1118 // Normalize network according to netmask.
1119 network.m_addr[i] &= netmask[i];
1120 n -= bits;
1121 }
1122}
1123
1128static inline int NetmaskBits(uint8_t x) {
1129 switch (x) {
1130 case 0x00:
1131 return 0;
1132 case 0x80:
1133 return 1;
1134 case 0xc0:
1135 return 2;
1136 case 0xe0:
1137 return 3;
1138 case 0xf0:
1139 return 4;
1140 case 0xf8:
1141 return 5;
1142 case 0xfc:
1143 return 6;
1144 case 0xfe:
1145 return 7;
1146 case 0xff:
1147 return 8;
1148 default:
1149 return -1;
1150 }
1151}
1152
1153CSubNet::CSubNet(const CNetAddr &addr, const CNetAddr &mask) : CSubNet() {
1154 valid = (addr.IsIPv4() || addr.IsIPv6()) && addr.m_net == mask.m_net;
1155 if (!valid) {
1156 return;
1157 }
1158 // Check if `mask` contains 1-bits after 0-bits (which is an invalid
1159 // netmask).
1160 bool zeros_found = false;
1161 for (auto b : mask.m_addr) {
1162 const int num_bits = NetmaskBits(b);
1163 if (num_bits == -1 || (zeros_found && num_bits != 0)) {
1164 valid = false;
1165 return;
1166 }
1167 if (num_bits < 8) {
1168 zeros_found = true;
1169 }
1170 }
1171
1172 assert(mask.m_addr.size() <= sizeof(netmask));
1173
1174 memcpy(netmask, mask.m_addr.data(), mask.m_addr.size());
1175
1176 network = addr;
1177
1178 // Normalize network according to netmask
1179 for (size_t x = 0; x < network.m_addr.size(); ++x) {
1180 network.m_addr[x] &= netmask[x];
1181 }
1182}
1183
1185 valid = addr.IsIPv4() || addr.IsIPv6();
1186 if (!valid) {
1187 return;
1188 }
1189
1190 assert(addr.m_addr.size() <= sizeof(netmask));
1191
1192 memset(netmask, 0xFF, addr.m_addr.size());
1193
1194 network = addr;
1195}
1196
1201bool CSubNet::Match(const CNetAddr &addr) const {
1202 if (!valid || !addr.IsValid() || network.m_net != addr.m_net) {
1203 return false;
1204 }
1205 assert(network.m_addr.size() == addr.m_addr.size());
1206 for (size_t x = 0; x < addr.m_addr.size(); ++x) {
1207 if ((addr.m_addr[x] & netmask[x]) != network.m_addr[x]) {
1208 return false;
1209 }
1210 }
1211 return true;
1212}
1213
1214std::string CSubNet::ToString() const {
1215 assert(network.m_addr.size() <= sizeof(netmask));
1216
1217 uint8_t cidr = 0;
1218
1219 for (size_t i = 0; i < network.m_addr.size(); ++i) {
1220 if (netmask[i] == 0x00) {
1221 break;
1222 }
1223 cidr += NetmaskBits(netmask[i]);
1224 }
1225
1226 return network.ToString() + strprintf("/%u", cidr);
1227}
1228
1229bool CSubNet::IsValid() const {
1230 return valid;
1231}
1232
1234 if (!(network.IsIPv4() || network.IsIPv6())) {
1235 return false;
1236 }
1237
1238 for (size_t x = 0; x < network.m_addr.size(); ++x) {
1239 if (network.m_addr[x] & ~netmask[x]) {
1240 return false;
1241 }
1242 }
1243
1244 return true;
1245}
1246
1247bool operator==(const CSubNet &a, const CSubNet &b) {
1248 return a.valid == b.valid && a.network == b.network &&
1249 !memcmp(a.netmask, b.netmask, 16);
1250}
1251
1252bool operator<(const CSubNet &a, const CSubNet &b) {
1253 return (a.network < b.network ||
1254 (a.network == b.network && memcmp(a.netmask, b.netmask, 16) < 0));
1255}
uint32_t Interpret(const std::vector< bool > &asmap, const std::vector< bool > &ip)
Definition: asmap.cpp:92
Network address.
Definition: netaddress.h:121
Network GetNetClass() const
Definition: netaddress.cpp:744
void SerializeV1Array(uint8_t(&arr)[V1_SERIALIZATION_SIZE]) const
Serialize in pre-ADDRv2/BIP155 format to an array.
Definition: netaddress.h:345
std::string ToStringIP() const
Definition: netaddress.cpp:626
prevector< ADDR_IPV6_SIZE, uint8_t > m_addr
Raw representation of the network address.
Definition: netaddress.h:127
bool IsBindAny() const
Definition: netaddress.cpp:332
bool IsRFC6052() const
Definition: netaddress.cpp:382
void SetIP(const CNetAddr &ip)
Definition: netaddress.cpp:125
bool SetSpecial(const std::string &addr)
Parse a Tor or I2P address and set this object to it.
Definition: netaddress.cpp:227
bool IsRFC7343() const
Definition: netaddress.cpp:417
bool GetIn6Addr(struct in6_addr *pipv6Addr) const
Try to get our IPv6 address.
Definition: netaddress.cpp:712
std::string ToString() const
Definition: netaddress.cpp:671
bool IsCJDNS() const
Check whether this object represents a CJDNS address.
Definition: netaddress.cpp:447
bool IsTor() const
Check whether this object represents a TOR address.
Definition: netaddress.cpp:433
bool IsRoutable() const
Definition: netaddress.cpp:512
bool GetInAddr(struct in_addr *pipv4Addr) const
Try to get our IPv4 address.
Definition: netaddress.cpp:693
bool HasLinkedIPv4() const
Whether this address has a linked IPv4 address (see GetLinkedIPv4()).
Definition: netaddress.cpp:721
Network m_net
Network to which this address belongs.
Definition: netaddress.h:132
bool IsRFC5737() const
Definition: netaddress.cpp:366
void SetLegacyIPv6(Span< const uint8_t > ipv6)
Set from a legacy IPv6 address.
Definition: netaddress.cpp:156
bool SetI2P(const std::string &addr)
Parse an I2P address and set this object to it.
Definition: netaddress.cpp:292
bool IsRFC6598() const
Definition: netaddress.cpp:362
bool IsRFC1918() const
Definition: netaddress.cpp:348
bool IsValid() const
Definition: netaddress.cpp:477
bool IsIPv4() const
Definition: netaddress.cpp:340
BIP155Network GetBIP155Network() const
Get the BIP155 network id of this address.
Definition: netaddress.cpp:28
uint32_t GetLinkedIPv4() const
For IPv4, mapped IPv4, SIIT translated IPv4, Teredo, 6to4 tunneled addresses, return the relevant IPv...
Definition: netaddress.cpp:726
bool SetTor(const std::string &addr)
Parse a Tor address and set this object to it.
Definition: netaddress.cpp:243
uint32_t m_scope_id
Scope id if scoped/link-local IPV6 address.
Definition: netaddress.h:138
bool IsRFC3849() const
Definition: netaddress.cpp:373
bool IsHeNet() const
Definition: netaddress.cpp:423
bool IsLocal() const
Definition: netaddress.cpp:451
static constexpr size_t V1_SERIALIZATION_SIZE
Size of CNetAddr when serialized as ADDRv1 (pre-BIP155) (in bytes).
Definition: netaddress.h:313
bool IsIPv6() const
Definition: netaddress.cpp:344
bool IsInternal() const
Definition: netaddress.cpp:524
std::vector< uint8_t > GetGroup(const std::vector< bool > &asmap) const
Get the canonical identifier of our network group.
Definition: netaddress.cpp:806
std::vector< uint8_t > GetAddrBytes() const
Definition: netaddress.cpp:861
bool SetNetFromBIP155Network(uint8_t possible_bip155_net, size_t address_size)
Set m_net from the provided BIP155 network id and size after validation.
Definition: netaddress.cpp:59
bool SetInternal(const std::string &name)
Create an "internal" address that represents a name or FQDN.
Definition: netaddress.cpp:188
bool IsRFC4193() const
Definition: netaddress.cpp:400
uint32_t GetMappedAS(const std::vector< bool > &asmap) const
Definition: netaddress.cpp:762
int GetReachabilityFrom(const CNetAddr *paddrPartner=nullptr) const
Calculates a metric for how reachable (*this) is from a given partner.
Definition: netaddress.cpp:885
static constexpr size_t MAX_ADDRV2_SIZE
Maximum size of an address as defined in BIP155 (in bytes).
Definition: netaddress.h:320
bool IsRFC2544() const
Definition: netaddress.cpp:354
enum Network GetNetwork() const
Definition: netaddress.cpp:549
bool IsRFC6145() const
Definition: netaddress.cpp:404
CNetAddr()
Construct an unspecified IPv6 network address (::/128).
Definition: netaddress.cpp:123
bool IsRFC3964() const
Definition: netaddress.cpp:378
bool IsRFC4380() const
Definition: netaddress.cpp:389
bool IsAddrV1Compatible() const
Check if the current object can be serialized in pre-ADDRv2/BIP155 format.
Definition: netaddress.cpp:528
BIP155Network
BIP155 network ids recognized by this software.
Definition: netaddress.h:301
bool IsRFC3927() const
Definition: netaddress.cpp:358
bool IsRFC4862() const
Definition: netaddress.cpp:394
bool IsRFC4843() const
Definition: netaddress.cpp:411
bool IsI2P() const
Check whether this object represents an I2P address.
Definition: netaddress.cpp:440
A hasher class for SHA-256.
Definition: sha256.h:13
CSHA256 & Write(const uint8_t *data, size_t len)
Definition: sha256.cpp:819
void Finalize(uint8_t hash[OUTPUT_SIZE])
Definition: sha256.cpp:844
A combination of a network address (CNetAddr) and a (TCP) port.
Definition: netaddress.h:545
std::string ToStringIPPort() const
std::string ToString() const
std::vector< uint8_t > GetKey() const
uint16_t GetPort() const
bool SetSockAddr(const struct sockaddr *paddr)
Definition: netaddress.cpp:993
std::string ToStringPort() const
uint16_t port
Definition: netaddress.h:548
bool GetSockAddr(struct sockaddr *paddr, socklen_t *addrlen) const
Obtain the IPv4/6 socket address this represents.
bool valid
Is this value valid? (only used to signal parse errors)
Definition: netaddress.h:502
CNetAddr network
Network (base) address.
Definition: netaddress.h:498
bool SanityCheck() const
uint8_t netmask[16]
Netmask, in network byte order.
Definition: netaddress.h:500
std::string ToString() const
bool IsValid() const
bool Match(const CNetAddr &addr) const
Definition: sha3.h:16
SHA3_256 & Finalize(Span< uint8_t > output)
Definition: sha3.cpp:232
SHA3_256 & Write(Span< const uint8_t > data)
Definition: sha3.cpp:202
static constexpr size_t OUTPUT_SIZE
Definition: sha3.h:33
constexpr std::size_t size() const noexcept
Definition: span.h:209
constexpr C * data() const noexcept
Definition: span.h:198
constexpr C * begin() const noexcept
Definition: span.h:199
constexpr C * end() const noexcept
Definition: span.h:200
Implements a drop-in replacement for std::vector<T> which stores up to N elements directly (without h...
Definition: prevector.h:38
size_type size() const
Definition: prevector.h:394
value_type * data()
Definition: prevector.h:618
iterator begin()
Definition: prevector.h:398
iterator end()
Definition: prevector.h:400
void assign(size_type n, const T &val)
Definition: prevector.h:326
static uint16_t ReadBE16(const uint8_t *ptr)
Definition: common.h:50
static uint32_t ReadBE32(const uint8_t *ptr)
Definition: common.h:56
@ I2P
Definition: logging.h:63
static const uint8_t VERSION[]
Definition: netaddress.cpp:202
static constexpr size_t CHECKSUM_LEN
Definition: netaddress.cpp:201
static void Checksum(Span< const uint8_t > addr_pubkey, uint8_t(&checksum)[CHECKSUM_LEN])
Definition: netaddress.cpp:206
static constexpr size_t TOTAL_LEN
Definition: netaddress.cpp:203
static const int NET_UNKNOWN
Definition: netaddress.cpp:872
static int GetExtNetwork(const CNetAddr *addr)
Definition: netaddress.cpp:874
static const int NET_TEREDO
Definition: netaddress.cpp:873
static int NetmaskBits(uint8_t x)
bool operator==(const CNetAddr &a, const CNetAddr &b)
Definition: netaddress.cpp:675
static std::string IPv6ToString(Span< const uint8_t > a, uint32_t scope_id)
Return an IPv6 address text representation with zero compression as described in RFC 5952 ("A Recomme...
Definition: netaddress.cpp:568
static std::string IPv4ToString(Span< const uint8_t > a)
Definition: netaddress.cpp:561
bool operator<(const CNetAddr &a, const CNetAddr &b)
Definition: netaddress.cpp:679
static constexpr size_t ADDR_CJDNS_SIZE
Size of CJDNS address (in bytes).
Definition: netaddress.h:110
static constexpr size_t ADDR_TORV3_SIZE
Size of TORv3 address (in bytes).
Definition: netaddress.h:104
static constexpr size_t ADDR_I2P_SIZE
Size of I2P address (in bytes).
Definition: netaddress.h:107
static constexpr size_t ADDR_INTERNAL_SIZE
Size of "internal" (NET_INTERNAL) address (in bytes).
Definition: netaddress.h:113
static constexpr size_t ADDR_TORV2_SIZE
Size of TORv2 address (in bytes).
Definition: netaddress.h:100
static const std::array< uint8_t, 6 > INTERNAL_IN_IPV6_PREFIX
Prefix of an IPv6 address when it contains an embedded "internal" address.
Definition: netaddress.h:89
static constexpr size_t ADDR_IPV4_SIZE
Size of IPv4 address (in bytes).
Definition: netaddress.h:94
static const std::array< uint8_t, 6 > TORV2_IN_IPV6_PREFIX
Prefix of an IPv6 address when it contains an embedded TORv2 address.
Definition: netaddress.h:81
Network
A network type.
Definition: netaddress.h:44
@ NET_I2P
I2P.
Definition: netaddress.h:59
@ NET_CJDNS
CJDNS.
Definition: netaddress.h:62
@ NET_MAX
Dummy value to indicate the number of NET_* constants.
Definition: netaddress.h:69
@ NET_ONION
TOR (v2 or v3)
Definition: netaddress.h:56
@ NET_IPV6
IPv6.
Definition: netaddress.h:53
@ NET_IPV4
IPv4.
Definition: netaddress.h:50
@ NET_UNROUTABLE
Addresses from these networks are not publicly routable on the global Internet.
Definition: netaddress.h:47
@ NET_INTERNAL
A set of addresses that represent the hash of a string or FQDN.
Definition: netaddress.h:66
static const std::array< uint8_t, 12 > IPV4_IN_IPV6_PREFIX
Prefix of an IPv6 address when it contains an embedded IPv4 address.
Definition: netaddress.h:74
static constexpr size_t ADDR_IPV6_SIZE
Size of IPv6 address (in bytes).
Definition: netaddress.h:97
@ IPV4
Definition: netbase.cpp:308
@ IPV6
Definition: netbase.cpp:310
const char * prefix
Definition: rest.cpp:817
const char * name
Definition: rest.cpp:47
bool ContainsNoNUL(std::string_view str) noexcept
Check if a string does not contain any embedded NUL (\0) characters.
Definition: string.h:90
bool HasPrefix(const T1 &obj, const std::array< uint8_t, PREFIX_LEN > &prefix)
Check whether a container begins with the given prefix.
Definition: string.h:112
#define strprintf
Format arguments and return the string or write to given std::ostream (see tinyformat::format doc for...
Definition: tinyformat.h:1202
std::string EncodeBase32(Span< const uint8_t > input, bool pad)
Base32 encode.
std::string ToLower(std::string_view str)
Returns the lowercase equivalent of the given string.
std::optional< std::vector< uint8_t > > DecodeBase32(std::string_view str)
assert(!tx.IsCoinBase())