Bitcoin ABC 0.30.9
P2P Digital Currency
main_impl.h
Go to the documentation of this file.
1/***********************************************************************
2 * Copyright (c) 2017 Tomas van der Wansem *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
5 ***********************************************************************/
6
7#ifndef SECP256K1_MODULE_MULTISET_MAIN_H
8#define SECP256K1_MODULE_MULTISET_MAIN_H
9
10
12
13#include "hash.h"
14#include "field.h"
15#include "group.h"
16
21static void multiset_from_gej_var(secp256k1_multiset *target, const secp256k1_gej *input) {
22 if (input->infinity) {
23 memset(&target->d, 0, sizeof(target->d));
24 } else {
25 secp256k1_fe_get_b32(target->d, &input->x);
26 secp256k1_fe_get_b32(target->d+32, &input->y);
27 secp256k1_fe_get_b32(target->d+64, &input->z);
28 }
29}
30
34static void gej_from_multiset_var(secp256k1_gej *target, const secp256k1_multiset *input) {
35 secp256k1_fe_set_b32(&target->x, input->d);
36 secp256k1_fe_set_b32(&target->y, input->d+32);
37 secp256k1_fe_set_b32(&target->z, input->d+64);
38
39 target->infinity = secp256k1_fe_is_zero(&target->z) ? 1 : 0;
40}
41
50static void ge_from_data_var(secp256k1_ge *target, const unsigned char *input, size_t inputLen, int inverse) {
51 secp256k1_sha256 hasher;
52 unsigned char buffer[8+32];
53 unsigned char trial[32];
54 uint64_t prefix;
55
56 /* Hash to buffer, leaving space for 8-byte prefix */
58 secp256k1_sha256_write(&hasher, input, inputLen);
59 secp256k1_sha256_finalize(&hasher, buffer+8);
60
61 /* Loop through trials, with 50% success per loop
62 * We can assume it ends within 2^64. */
63 for(prefix=0; 1; prefix++)
64 {
66
67 /* Set prefix in little-endian */
68 buffer[0] = prefix & 0xFF;
69 buffer[1] = (prefix>>8) & 0xFF;
70 buffer[2] = (prefix>>16) & 0xFF;
71 buffer[3] = (prefix>>24) & 0xFF;
72 buffer[4] = (prefix>>32) & 0xFF;
73 buffer[5] = (prefix>>40) & 0xFF;
74 buffer[6] = (prefix>>48) & 0xFF;
75 buffer[7] = (prefix>>56) & 0xFF;
76
77 /* Hash to trial */
79 secp256k1_sha256_write(&hasher, buffer, sizeof(buffer));
80 secp256k1_sha256_finalize(&hasher, trial);
81
82 if (!secp256k1_fe_set_b32(&x, trial)) {
83 continue;
84 }
85
86 /* We let y is even be the element and odd be its inverse */
87 if (!secp256k1_ge_set_xo_var(target, &x, inverse)) {
88 continue;
89 }
90
93 break;
94 }
95}
96
98static int multiset_add_remove(const secp256k1_context* ctx, secp256k1_multiset *multiset, const unsigned char *input, size_t inputLen, int remove) {
99 secp256k1_ge newelm;
100 secp256k1_gej source, target;
101
102 VERIFY_CHECK(ctx != NULL);
103 ARG_CHECK(multiset != NULL);
104 ARG_CHECK(input != NULL);
105
106 gej_from_multiset_var(&source, multiset);
107 ge_from_data_var(&newelm, input, inputLen, remove);
108
109 /*
110 * The `target` group element needs to be initialized.
111 * If the result of the addition is infinity, the field elements won't be
112 * set and the `secp256k1_fe_normalize` calls below will branch on
113 * uninitialized data.
114 */
116 secp256k1_gej_add_ge_var(&target, &source, &newelm, NULL);
117
118 secp256k1_fe_normalize(&target.x);
119 secp256k1_fe_normalize(&target.y);
120 secp256k1_fe_normalize(&target.z);
121 multiset_from_gej_var(multiset, &target);
122
123 return 1;
124}
125
127int secp256k1_multiset_add(const secp256k1_context* ctx, secp256k1_multiset *multiset, const unsigned char *input, size_t inputLen) {
128 return multiset_add_remove(ctx, multiset, input, inputLen, 0);
129}
130
132int secp256k1_multiset_remove(const secp256k1_context* ctx, secp256k1_multiset *multiset, const unsigned char *input, size_t inputLen) {
133 return multiset_add_remove(ctx, multiset, input, inputLen, 1);
134}
135
138 secp256k1_gej gej_multiset, gej_input, gej_result;
139
140 VERIFY_CHECK(ctx != NULL);
141 ARG_CHECK(multiset != NULL);
142 ARG_CHECK(input != NULL);
143
144 gej_from_multiset_var(&gej_multiset, multiset);
145 gej_from_multiset_var(&gej_input, input);
146
147 /*
148 * The `gej_result` group element needs to be initialized.
149 * If the result of the addition is infinity, the field elements won't be
150 * set and the `secp256k1_fe_normalize` calls below will branch on
151 * uninitialized data.
152 */
153 secp256k1_gej_set_infinity(&gej_result);
154 secp256k1_gej_add_var(&gej_result, &gej_multiset, &gej_input, NULL);
155
156 secp256k1_fe_normalize(&gej_result.x);
157 secp256k1_fe_normalize(&gej_result.y);
158 secp256k1_fe_normalize(&gej_result.z);
159 multiset_from_gej_var(multiset, &gej_result);
160
161 return 1;
162}
163
165int secp256k1_multiset_finalize(const secp256k1_context* ctx, unsigned char *resultHash, const secp256k1_multiset *multiset) {
166 secp256k1_sha256 hasher;
167 unsigned char buffer[64];
168 secp256k1_gej gej;
169 secp256k1_ge ge;
170
171 VERIFY_CHECK(ctx != NULL);
172 ARG_CHECK(resultHash != NULL);
173 ARG_CHECK(multiset != NULL);
174
175 gej_from_multiset_var(&gej, multiset);
176
177 if (gej.infinity) {
178 /* empty set is encoded as zeros */
179 memset(resultHash, 0x00, 32);
180 return 1;
181 }
182
183 /* we must normalize to affine first */
184 secp256k1_ge_set_gej(&ge, &gej);
187 secp256k1_fe_get_b32(buffer, &ge.x);
188 secp256k1_fe_get_b32(buffer+32, &ge.y);
189
191 secp256k1_sha256_write(&hasher, buffer, sizeof(buffer));
192 secp256k1_sha256_finalize(&hasher, resultHash);
193
194 return 1;
195}
196
202
203 VERIFY_CHECK(ctx != NULL);
204
205 multiset_from_gej_var(multiset, &inf);
206
207 return 1;
208}
209
210#endif /* SECP256K1_MODULE_MULTISET_MAIN_H */
secp256k1_context * ctx
static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a)
Set a field element equal to 32-byte big endian value.
static int secp256k1_fe_is_zero(const secp256k1_fe *a)
Verify whether a field element is zero.
static void secp256k1_fe_normalize(secp256k1_fe *r)
Field element module.
static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a)
Convert a field element to a 32-byte big endian value.
#define SECP256K1_GEJ_CONST_INFINITY
Definition: group.h:31
static void secp256k1_gej_set_infinity(secp256k1_gej *r)
Set a group element (jacobian) equal to the point at infinity.
static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd)
Set a group element (affine) equal to the point with the given X coordinate, and given oddness for Y.
static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr)
Set r equal to the sum of a and b (with b given in affine coordinates).
static int secp256k1_ge_is_valid_var(const secp256k1_ge *a)
Check whether a group element is valid (i.e., on the curve).
static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr)
Set r equal to the sum of a and b.
static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a)
Set a group element equal to another which is given in jacobian coordinates.
static int secp256k1_ge_is_infinity(const secp256k1_ge *a)
Check whether a group element is the point at infinity.
int secp256k1_multiset_remove(const secp256k1_context *ctx, secp256k1_multiset *multiset, const unsigned char *input, size_t inputLen)
Removes a data element from the multiset.
Definition: main_impl.h:132
static void ge_from_data_var(secp256k1_ge *target, const unsigned char *input, size_t inputLen, int inverse)
Converts a data element to a group element (affine)
Definition: main_impl.h:50
int secp256k1_multiset_combine(const secp256k1_context *ctx, secp256k1_multiset *multiset, const secp256k1_multiset *input)
Adds input multiset to multiset.
Definition: main_impl.h:137
int secp256k1_multiset_add(const secp256k1_context *ctx, secp256k1_multiset *multiset, const unsigned char *input, size_t inputLen)
Adds a data element to the multiset.
Definition: main_impl.h:127
int secp256k1_multiset_init(const secp256k1_context *ctx, secp256k1_multiset *multiset)
Inits the multiset with the constant for empty data, represented by the Jacobian GE infinite.
Definition: main_impl.h:200
static int multiset_add_remove(const secp256k1_context *ctx, secp256k1_multiset *multiset, const unsigned char *input, size_t inputLen, int remove)
Adds or removes a data element.
Definition: main_impl.h:98
static void gej_from_multiset_var(secp256k1_gej *target, const secp256k1_multiset *input)
Converts a multiset to group element (Jacobian) Infinite uses special value, z = 0.
Definition: main_impl.h:34
static void multiset_from_gej_var(secp256k1_multiset *target, const secp256k1_gej *input)
Converts a group element (Jacobian) to a multiset.
Definition: main_impl.h:21
int secp256k1_multiset_finalize(const secp256k1_context *ctx, unsigned char *resultHash, const secp256k1_multiset *multiset)
Hash the multiset into resultHash.
Definition: main_impl.h:165
const char * prefix
Definition: rest.cpp:817
const char * source
Definition: rpcconsole.cpp:53
static void secp256k1_sha256_initialize(secp256k1_sha256 *hash)
static void secp256k1_sha256_finalize(secp256k1_sha256 *hash, unsigned char *out32)
static void secp256k1_sha256_write(secp256k1_sha256 *hash, const unsigned char *data, size_t size)
#define VERIFY_CHECK(cond)
Definition: util.h:68
#define ARG_CHECK(cond)
Definition: secp256k1.c:28
A group element of the secp256k1 curve, in affine coordinates.
Definition: group.h:13
secp256k1_fe x
Definition: group.h:14
secp256k1_fe y
Definition: group.h:15
A group element of the secp256k1 curve, in jacobian coordinates.
Definition: group.h:23
secp256k1_fe y
Definition: group.h:25
secp256k1_fe x
Definition: group.h:24
int infinity
Definition: group.h:27
secp256k1_fe z
Definition: group.h:26
Opaque multiset; this is actually a group element.
unsigned char d[96]