Bitcoin ABC 0.30.5
P2P Digital Currency
field_5x52_impl.h
Go to the documentation of this file.
1/***********************************************************************
2 * Copyright (c) 2013, 2014 Pieter Wuille *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
5 ***********************************************************************/
6
7#ifndef SECP256K1_FIELD_REPR_IMPL_H
8#define SECP256K1_FIELD_REPR_IMPL_H
9
10#if defined HAVE_CONFIG_H
11#include "libsecp256k1-config.h"
12#endif
13
14#include "util.h"
15#include "field.h"
16#include "modinv64_impl.h"
17
18#if defined(USE_ASM_X86_64)
19#include "field_5x52_asm_impl.h"
20#else
22#endif
23
32#ifdef VERIFY
33static void secp256k1_fe_verify(const secp256k1_fe *a) {
34 const uint64_t *d = a->n;
35 int m = a->normalized ? 1 : 2 * a->magnitude, r = 1;
36 /* secp256k1 'p' value defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
37 r &= (d[0] <= 0xFFFFFFFFFFFFFULL * m);
38 r &= (d[1] <= 0xFFFFFFFFFFFFFULL * m);
39 r &= (d[2] <= 0xFFFFFFFFFFFFFULL * m);
40 r &= (d[3] <= 0xFFFFFFFFFFFFFULL * m);
41 r &= (d[4] <= 0x0FFFFFFFFFFFFULL * m);
42 r &= (a->magnitude >= 0);
43 r &= (a->magnitude <= 2048);
44 if (a->normalized) {
45 r &= (a->magnitude <= 1);
46 if (r && (d[4] == 0x0FFFFFFFFFFFFULL) && ((d[3] & d[2] & d[1]) == 0xFFFFFFFFFFFFFULL)) {
47 r &= (d[0] < 0xFFFFEFFFFFC2FULL);
48 }
49 }
50 VERIFY_CHECK(r == 1);
51}
52#endif
53
55 uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
56
57 /* Reduce t4 at the start so there will be at most a single carry from the first pass */
58 uint64_t m;
59 uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
60
61 /* The first pass ensures the magnitude is 1, ... */
62 t0 += x * 0x1000003D1ULL;
63 t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
64 t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; m = t1;
65 t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; m &= t2;
66 t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; m &= t3;
67
68 /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
69 VERIFY_CHECK(t4 >> 49 == 0);
70
71 /* At most a single final reduction is needed; check if the value is >= the field characteristic */
72 x = (t4 >> 48) | ((t4 == 0x0FFFFFFFFFFFFULL) & (m == 0xFFFFFFFFFFFFFULL)
73 & (t0 >= 0xFFFFEFFFFFC2FULL));
74
75 /* Apply the final reduction (for constant-time behaviour, we do it always) */
76 t0 += x * 0x1000003D1ULL;
77 t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
78 t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
79 t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
80 t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
81
82 /* If t4 didn't carry to bit 48 already, then it should have after any final reduction */
83 VERIFY_CHECK(t4 >> 48 == x);
84
85 /* Mask off the possible multiple of 2^256 from the final reduction */
86 t4 &= 0x0FFFFFFFFFFFFULL;
87
88 r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
89
90#ifdef VERIFY
91 r->magnitude = 1;
92 r->normalized = 1;
93 secp256k1_fe_verify(r);
94#endif
95}
96
98 uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
99
100 /* Reduce t4 at the start so there will be at most a single carry from the first pass */
101 uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
102
103 /* The first pass ensures the magnitude is 1, ... */
104 t0 += x * 0x1000003D1ULL;
105 t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
106 t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
107 t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
108 t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
109
110 /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
111 VERIFY_CHECK(t4 >> 49 == 0);
112
113 r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
114
115#ifdef VERIFY
116 r->magnitude = 1;
117 secp256k1_fe_verify(r);
118#endif
119}
120
122 uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
123
124 /* Reduce t4 at the start so there will be at most a single carry from the first pass */
125 uint64_t m;
126 uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
127
128 /* The first pass ensures the magnitude is 1, ... */
129 t0 += x * 0x1000003D1ULL;
130 t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
131 t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; m = t1;
132 t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; m &= t2;
133 t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; m &= t3;
134
135 /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
136 VERIFY_CHECK(t4 >> 49 == 0);
137
138 /* At most a single final reduction is needed; check if the value is >= the field characteristic */
139 x = (t4 >> 48) | ((t4 == 0x0FFFFFFFFFFFFULL) & (m == 0xFFFFFFFFFFFFFULL)
140 & (t0 >= 0xFFFFEFFFFFC2FULL));
141
142 if (x) {
143 t0 += 0x1000003D1ULL;
144 t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
145 t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
146 t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
147 t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
148
149 /* If t4 didn't carry to bit 48 already, then it should have after any final reduction */
150 VERIFY_CHECK(t4 >> 48 == x);
151
152 /* Mask off the possible multiple of 2^256 from the final reduction */
153 t4 &= 0x0FFFFFFFFFFFFULL;
154 }
155
156 r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
157
158#ifdef VERIFY
159 r->magnitude = 1;
160 r->normalized = 1;
161 secp256k1_fe_verify(r);
162#endif
163}
164
166 uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
167
168 /* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */
169 uint64_t z0, z1;
170
171 /* Reduce t4 at the start so there will be at most a single carry from the first pass */
172 uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
173
174 /* The first pass ensures the magnitude is 1, ... */
175 t0 += x * 0x1000003D1ULL;
176 t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL; z0 = t0; z1 = t0 ^ 0x1000003D0ULL;
177 t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; z0 |= t1; z1 &= t1;
178 t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; z0 |= t2; z1 &= t2;
179 t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; z0 |= t3; z1 &= t3;
180 z0 |= t4; z1 &= t4 ^ 0xF000000000000ULL;
181
182 /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
183 VERIFY_CHECK(t4 >> 49 == 0);
184
185 return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL);
186}
187
189 uint64_t t0, t1, t2, t3, t4;
190 uint64_t z0, z1;
191 uint64_t x;
192
193 t0 = r->n[0];
194 t4 = r->n[4];
195
196 /* Reduce t4 at the start so there will be at most a single carry from the first pass */
197 x = t4 >> 48;
198
199 /* The first pass ensures the magnitude is 1, ... */
200 t0 += x * 0x1000003D1ULL;
201
202 /* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */
203 z0 = t0 & 0xFFFFFFFFFFFFFULL;
204 z1 = z0 ^ 0x1000003D0ULL;
205
206 /* Fast return path should catch the majority of cases */
207 if ((z0 != 0ULL) & (z1 != 0xFFFFFFFFFFFFFULL)) {
208 return 0;
209 }
210
211 t1 = r->n[1];
212 t2 = r->n[2];
213 t3 = r->n[3];
214
215 t4 &= 0x0FFFFFFFFFFFFULL;
216
217 t1 += (t0 >> 52);
218 t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; z0 |= t1; z1 &= t1;
219 t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; z0 |= t2; z1 &= t2;
220 t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; z0 |= t3; z1 &= t3;
221 z0 |= t4; z1 &= t4 ^ 0xF000000000000ULL;
222
223 /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
224 VERIFY_CHECK(t4 >> 49 == 0);
225
226 return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL);
227}
228
230 r->n[0] = a;
231 r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0;
232#ifdef VERIFY
233 r->magnitude = 1;
234 r->normalized = 1;
235 secp256k1_fe_verify(r);
236#endif
237}
238
240 const uint64_t *t = a->n;
241#ifdef VERIFY
242 VERIFY_CHECK(a->normalized);
243 secp256k1_fe_verify(a);
244#endif
245 return (t[0] | t[1] | t[2] | t[3] | t[4]) == 0;
246}
247
249#ifdef VERIFY
250 VERIFY_CHECK(a->normalized);
251 secp256k1_fe_verify(a);
252#endif
253 return a->n[0] & 1;
254}
255
257 int i;
258#ifdef VERIFY
259 a->magnitude = 0;
260 a->normalized = 1;
261#endif
262 for (i=0; i<5; i++) {
263 a->n[i] = 0;
264 }
265}
266
267static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b) {
268 int i;
269#ifdef VERIFY
270 VERIFY_CHECK(a->normalized);
271 VERIFY_CHECK(b->normalized);
272 secp256k1_fe_verify(a);
273 secp256k1_fe_verify(b);
274#endif
275 for (i = 4; i >= 0; i--) {
276 if (a->n[i] > b->n[i]) {
277 return 1;
278 }
279 if (a->n[i] < b->n[i]) {
280 return -1;
281 }
282 }
283 return 0;
284}
285
286static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a) {
287 int ret;
288 r->n[0] = (uint64_t)a[31]
289 | ((uint64_t)a[30] << 8)
290 | ((uint64_t)a[29] << 16)
291 | ((uint64_t)a[28] << 24)
292 | ((uint64_t)a[27] << 32)
293 | ((uint64_t)a[26] << 40)
294 | ((uint64_t)(a[25] & 0xF) << 48);
295 r->n[1] = (uint64_t)((a[25] >> 4) & 0xF)
296 | ((uint64_t)a[24] << 4)
297 | ((uint64_t)a[23] << 12)
298 | ((uint64_t)a[22] << 20)
299 | ((uint64_t)a[21] << 28)
300 | ((uint64_t)a[20] << 36)
301 | ((uint64_t)a[19] << 44);
302 r->n[2] = (uint64_t)a[18]
303 | ((uint64_t)a[17] << 8)
304 | ((uint64_t)a[16] << 16)
305 | ((uint64_t)a[15] << 24)
306 | ((uint64_t)a[14] << 32)
307 | ((uint64_t)a[13] << 40)
308 | ((uint64_t)(a[12] & 0xF) << 48);
309 r->n[3] = (uint64_t)((a[12] >> 4) & 0xF)
310 | ((uint64_t)a[11] << 4)
311 | ((uint64_t)a[10] << 12)
312 | ((uint64_t)a[9] << 20)
313 | ((uint64_t)a[8] << 28)
314 | ((uint64_t)a[7] << 36)
315 | ((uint64_t)a[6] << 44);
316 r->n[4] = (uint64_t)a[5]
317 | ((uint64_t)a[4] << 8)
318 | ((uint64_t)a[3] << 16)
319 | ((uint64_t)a[2] << 24)
320 | ((uint64_t)a[1] << 32)
321 | ((uint64_t)a[0] << 40);
322 ret = !((r->n[4] == 0x0FFFFFFFFFFFFULL) & ((r->n[3] & r->n[2] & r->n[1]) == 0xFFFFFFFFFFFFFULL) & (r->n[0] >= 0xFFFFEFFFFFC2FULL));
323#ifdef VERIFY
324 r->magnitude = 1;
325 if (ret) {
326 r->normalized = 1;
327 secp256k1_fe_verify(r);
328 } else {
329 r->normalized = 0;
330 }
331#endif
332 return ret;
333}
334
336static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a) {
337#ifdef VERIFY
338 VERIFY_CHECK(a->normalized);
339 secp256k1_fe_verify(a);
340#endif
341 r[0] = (a->n[4] >> 40) & 0xFF;
342 r[1] = (a->n[4] >> 32) & 0xFF;
343 r[2] = (a->n[4] >> 24) & 0xFF;
344 r[3] = (a->n[4] >> 16) & 0xFF;
345 r[4] = (a->n[4] >> 8) & 0xFF;
346 r[5] = a->n[4] & 0xFF;
347 r[6] = (a->n[3] >> 44) & 0xFF;
348 r[7] = (a->n[3] >> 36) & 0xFF;
349 r[8] = (a->n[3] >> 28) & 0xFF;
350 r[9] = (a->n[3] >> 20) & 0xFF;
351 r[10] = (a->n[3] >> 12) & 0xFF;
352 r[11] = (a->n[3] >> 4) & 0xFF;
353 r[12] = ((a->n[2] >> 48) & 0xF) | ((a->n[3] & 0xF) << 4);
354 r[13] = (a->n[2] >> 40) & 0xFF;
355 r[14] = (a->n[2] >> 32) & 0xFF;
356 r[15] = (a->n[2] >> 24) & 0xFF;
357 r[16] = (a->n[2] >> 16) & 0xFF;
358 r[17] = (a->n[2] >> 8) & 0xFF;
359 r[18] = a->n[2] & 0xFF;
360 r[19] = (a->n[1] >> 44) & 0xFF;
361 r[20] = (a->n[1] >> 36) & 0xFF;
362 r[21] = (a->n[1] >> 28) & 0xFF;
363 r[22] = (a->n[1] >> 20) & 0xFF;
364 r[23] = (a->n[1] >> 12) & 0xFF;
365 r[24] = (a->n[1] >> 4) & 0xFF;
366 r[25] = ((a->n[0] >> 48) & 0xF) | ((a->n[1] & 0xF) << 4);
367 r[26] = (a->n[0] >> 40) & 0xFF;
368 r[27] = (a->n[0] >> 32) & 0xFF;
369 r[28] = (a->n[0] >> 24) & 0xFF;
370 r[29] = (a->n[0] >> 16) & 0xFF;
371 r[30] = (a->n[0] >> 8) & 0xFF;
372 r[31] = a->n[0] & 0xFF;
373}
374
376#ifdef VERIFY
377 VERIFY_CHECK(a->magnitude <= m);
378 secp256k1_fe_verify(a);
379#endif
380 r->n[0] = 0xFFFFEFFFFFC2FULL * 2 * (m + 1) - a->n[0];
381 r->n[1] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[1];
382 r->n[2] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[2];
383 r->n[3] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[3];
384 r->n[4] = 0x0FFFFFFFFFFFFULL * 2 * (m + 1) - a->n[4];
385#ifdef VERIFY
386 r->magnitude = m + 1;
387 r->normalized = 0;
388 secp256k1_fe_verify(r);
389#endif
390}
391
393 r->n[0] *= a;
394 r->n[1] *= a;
395 r->n[2] *= a;
396 r->n[3] *= a;
397 r->n[4] *= a;
398#ifdef VERIFY
399 r->magnitude *= a;
400 r->normalized = 0;
401 secp256k1_fe_verify(r);
402#endif
403}
404
406#ifdef VERIFY
407 secp256k1_fe_verify(a);
408#endif
409 r->n[0] += a->n[0];
410 r->n[1] += a->n[1];
411 r->n[2] += a->n[2];
412 r->n[3] += a->n[3];
413 r->n[4] += a->n[4];
414#ifdef VERIFY
415 r->magnitude += a->magnitude;
416 r->normalized = 0;
417 secp256k1_fe_verify(r);
418#endif
419}
420
422#ifdef VERIFY
423 VERIFY_CHECK(a->magnitude <= 8);
424 VERIFY_CHECK(b->magnitude <= 8);
425 secp256k1_fe_verify(a);
426 secp256k1_fe_verify(b);
427 VERIFY_CHECK(r != b);
428 VERIFY_CHECK(a != b);
429#endif
430 secp256k1_fe_mul_inner(r->n, a->n, b->n);
431#ifdef VERIFY
432 r->magnitude = 1;
433 r->normalized = 0;
434 secp256k1_fe_verify(r);
435#endif
436}
437
438static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a) {
439#ifdef VERIFY
440 VERIFY_CHECK(a->magnitude <= 8);
441 secp256k1_fe_verify(a);
442#endif
443 secp256k1_fe_sqr_inner(r->n, a->n);
444#ifdef VERIFY
445 r->magnitude = 1;
446 r->normalized = 0;
447 secp256k1_fe_verify(r);
448#endif
449}
450
451static SECP256K1_INLINE void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag) {
452 uint64_t mask0, mask1;
453 VG_CHECK_VERIFY(r->n, sizeof(r->n));
454 mask0 = flag + ~((uint64_t)0);
455 mask1 = ~mask0;
456 r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1);
457 r->n[1] = (r->n[1] & mask0) | (a->n[1] & mask1);
458 r->n[2] = (r->n[2] & mask0) | (a->n[2] & mask1);
459 r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1);
460 r->n[4] = (r->n[4] & mask0) | (a->n[4] & mask1);
461#ifdef VERIFY
462 if (flag) {
463 r->magnitude = a->magnitude;
464 r->normalized = a->normalized;
465 }
466#endif
467}
468
470 uint64_t mask0, mask1;
471 VG_CHECK_VERIFY(r->n, sizeof(r->n));
472 mask0 = flag + ~((uint64_t)0);
473 mask1 = ~mask0;
474 r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1);
475 r->n[1] = (r->n[1] & mask0) | (a->n[1] & mask1);
476 r->n[2] = (r->n[2] & mask0) | (a->n[2] & mask1);
477 r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1);
478}
479
481#ifdef VERIFY
482 VERIFY_CHECK(a->normalized);
483#endif
484 r->n[0] = a->n[0] | a->n[1] << 52;
485 r->n[1] = a->n[1] >> 12 | a->n[2] << 40;
486 r->n[2] = a->n[2] >> 24 | a->n[3] << 28;
487 r->n[3] = a->n[3] >> 36 | a->n[4] << 16;
488}
489
491 r->n[0] = a->n[0] & 0xFFFFFFFFFFFFFULL;
492 r->n[1] = a->n[0] >> 52 | ((a->n[1] << 12) & 0xFFFFFFFFFFFFFULL);
493 r->n[2] = a->n[1] >> 40 | ((a->n[2] << 24) & 0xFFFFFFFFFFFFFULL);
494 r->n[3] = a->n[2] >> 28 | ((a->n[3] << 36) & 0xFFFFFFFFFFFFFULL);
495 r->n[4] = a->n[3] >> 16;
496#ifdef VERIFY
497 r->magnitude = 1;
498 r->normalized = 1;
499#endif
500}
501
503 const uint64_t M52 = UINT64_MAX >> 12;
504 const uint64_t a0 = a->v[0], a1 = a->v[1], a2 = a->v[2], a3 = a->v[3], a4 = a->v[4];
505
506 /* The output from secp256k1_modinv64{_var} should be normalized to range [0,modulus), and
507 * have limbs in [0,2^62). The modulus is < 2^256, so the top limb must be below 2^(256-62*4).
508 */
509 VERIFY_CHECK(a0 >> 62 == 0);
510 VERIFY_CHECK(a1 >> 62 == 0);
511 VERIFY_CHECK(a2 >> 62 == 0);
512 VERIFY_CHECK(a3 >> 62 == 0);
513 VERIFY_CHECK(a4 >> 8 == 0);
514
515 r->n[0] = a0 & M52;
516 r->n[1] = (a0 >> 52 | a1 << 10) & M52;
517 r->n[2] = (a1 >> 42 | a2 << 20) & M52;
518 r->n[3] = (a2 >> 32 | a3 << 30) & M52;
519 r->n[4] = (a3 >> 22 | a4 << 40);
520
521#ifdef VERIFY
522 r->magnitude = 1;
523 r->normalized = 1;
524 secp256k1_fe_verify(r);
525#endif
526}
527
529 const uint64_t M62 = UINT64_MAX >> 2;
530 const uint64_t a0 = a->n[0], a1 = a->n[1], a2 = a->n[2], a3 = a->n[3], a4 = a->n[4];
531
532#ifdef VERIFY
533 VERIFY_CHECK(a->normalized);
534#endif
535
536 r->v[0] = (a0 | a1 << 52) & M62;
537 r->v[1] = (a1 >> 10 | a2 << 42) & M62;
538 r->v[2] = (a2 >> 20 | a3 << 32) & M62;
539 r->v[3] = (a3 >> 30 | a4 << 22) & M62;
540 r->v[4] = a4 >> 40;
541}
542
544 {{-0x1000003D1LL, 0, 0, 0, 256}},
545 0x27C7F6E22DDACACFLL
546};
547
548static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *x) {
549 secp256k1_fe tmp;
551
552 tmp = *x;
554 secp256k1_fe_to_signed62(&s, &tmp);
557
558#ifdef VERIFY
560#endif
561}
562
564 secp256k1_fe tmp;
566
567 tmp = *x;
569 secp256k1_fe_to_signed62(&s, &tmp);
572
573#ifdef VERIFY
575#endif
576}
577
578#endif /* SECP256K1_FIELD_REPR_IMPL_H */
static SECP256K1_INLINE void secp256k1_fe_sqr_inner(uint32_t *r, const uint32_t *a)
static SECP256K1_INLINE void secp256k1_fe_mul_inner(uint32_t *r, const uint32_t *a, const uint32_t *SECP256K1_RESTRICT b)
static SECP256K1_INLINE void secp256k1_fe_set_int(secp256k1_fe *r, int a)
static void secp256k1_fe_normalize_weak(secp256k1_fe *r)
static SECP256K1_INLINE int secp256k1_fe_is_zero(const secp256k1_fe *a)
static void secp256k1_fe_normalize_var(secp256k1_fe *r)
static SECP256K1_INLINE void secp256k1_fe_mul_int(secp256k1_fe *r, int a)
static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe *SECP256K1_RESTRICT b)
static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a)
static SECP256K1_INLINE void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag)
static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe *r)
static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a)
static SECP256K1_INLINE void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag)
static SECP256K1_INLINE void secp256k1_fe_negate(secp256k1_fe *r, const secp256k1_fe *a, int m)
static void secp256k1_fe_to_signed62(secp256k1_modinv64_signed62 *r, const secp256k1_fe *a)
static void secp256k1_fe_normalize(secp256k1_fe *r)
Implements arithmetic modulo FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F,...
static SECP256K1_INLINE int secp256k1_fe_is_odd(const secp256k1_fe *a)
static SECP256K1_INLINE void secp256k1_fe_clear(secp256k1_fe *a)
static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a)
static SECP256K1_INLINE void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a)
static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a)
Convert a field element to a 32-byte big endian value.
static SECP256K1_INLINE void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a)
static int secp256k1_fe_normalizes_to_zero(secp256k1_fe *r)
static void secp256k1_fe_from_signed62(secp256k1_fe *r, const secp256k1_modinv64_signed62 *a)
static const secp256k1_modinv64_modinfo secp256k1_const_modinfo_fe
static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b)
static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *x)
static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *x)
static void secp256k1_modinv64(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo)
static void secp256k1_modinv64_var(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo)
#define VG_CHECK_VERIFY(x, y)
Definition: util.h:88
#define VERIFY_CHECK(cond)
Definition: util.h:68
#define SECP256K1_RESTRICT
Definition: util.h:158
#define SECP256K1_INLINE
Definition: secp256k1.h:127
uint32_t n[10]
Definition: field_10x26.h:16