Bitcoin ABC 0.32.8
P2P Digital Currency
ecdsa.c
Go to the documentation of this file.
1/*************************************************************************
2 * Written in 2020-2022 by Elichai Turkel *
3 * To the extent possible under law, the author(s) have dedicated all *
4 * copyright and related and neighboring rights to the software in this *
5 * file to the public domain worldwide. This software is distributed *
6 * without any warranty. For the CC0 Public Domain Dedication, see *
7 * EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 *
8 *************************************************************************/
9
10#include <stdio.h>
11#include <assert.h>
12#include <string.h>
13
14#include <secp256k1.h>
15
16#include "random.h"
17
18
19
20int main(void) {
21 /* Instead of signing the message directly, we must sign a 32-byte hash.
22 * Here the message is "Hello, world!" and the hash function was SHA-256.
23 * An actual implementation should just call SHA-256, but this example
24 * hardcodes the output to avoid depending on an additional library.
25 * See https://bitcoin.stackexchange.com/questions/81115/if-someone-wanted-to-pretend-to-be-satoshi-by-posting-a-fake-signature-to-defrau/81116#81116 */
26 unsigned char msg_hash[32] = {
27 0x31, 0x5F, 0x5B, 0xDB, 0x76, 0xD0, 0x78, 0xC4,
28 0x3B, 0x8A, 0xC0, 0x06, 0x4E, 0x4A, 0x01, 0x64,
29 0x61, 0x2B, 0x1F, 0xCE, 0x77, 0xC8, 0x69, 0x34,
30 0x5B, 0xFC, 0x94, 0xC7, 0x58, 0x94, 0xED, 0xD3,
31 };
32 unsigned char seckey[32];
33 unsigned char randomize[32];
34 unsigned char compressed_pubkey[33];
35 unsigned char serialized_signature[64];
36 size_t len;
37 int is_signature_valid;
38 int return_val;
39 secp256k1_pubkey pubkey;
41 /* The specification in secp256k1.h states that `secp256k1_ec_pubkey_create` needs
42 * a context object initialized for signing and `secp256k1_ecdsa_verify` needs
43 * a context initialized for verification, which is why we create a context
44 * for both signing and verification with the SECP256K1_CONTEXT_SIGN and
45 * SECP256K1_CONTEXT_VERIFY flags. */
47 if (!fill_random(randomize, sizeof(randomize))) {
48 printf("Failed to generate randomness\n");
49 return 1;
50 }
51 /* Randomizing the context is recommended to protect against side-channel
52 * leakage See `secp256k1_context_randomize` in secp256k1.h for more
53 * information about it. This should never fail. */
54 return_val = secp256k1_context_randomize(ctx, randomize);
55 assert(return_val);
56
57 /*** Key Generation ***/
58
59 /* If the secret key is zero or out of range (bigger than secp256k1's
60 * order), we try to sample a new key. Note that the probability of this
61 * happening is negligible. */
62 while (1) {
63 if (!fill_random(seckey, sizeof(seckey))) {
64 printf("Failed to generate randomness\n");
65 return 1;
66 }
67 if (secp256k1_ec_seckey_verify(ctx, seckey)) {
68 break;
69 }
70 }
71
72 /* Public key creation using a valid context with a verified secret key should never fail */
73 return_val = secp256k1_ec_pubkey_create(ctx, &pubkey, seckey);
74 assert(return_val);
75
76 /* Serialize the pubkey in a compressed form(33 bytes). Should always return 1. */
77 len = sizeof(compressed_pubkey);
78 return_val = secp256k1_ec_pubkey_serialize(ctx, compressed_pubkey, &len, &pubkey, SECP256K1_EC_COMPRESSED);
79 assert(return_val);
80 /* Should be the same size as the size of the output, because we passed a 33 byte array. */
81 assert(len == sizeof(compressed_pubkey));
82
83 /*** Signing ***/
84
85 /* Generate an ECDSA signature `noncefp` and `ndata` allows you to pass a
86 * custom nonce function, passing `NULL` will use the RFC-6979 safe default.
87 * Signing with a valid context, verified secret key
88 * and the default nonce function should never fail. */
89 return_val = secp256k1_ecdsa_sign(ctx, &sig, msg_hash, seckey, NULL, NULL);
90 assert(return_val);
91
92 /* Serialize the signature in a compact form. Should always return 1
93 * according to the documentation in secp256k1.h. */
94 return_val = secp256k1_ecdsa_signature_serialize_compact(ctx, serialized_signature, &sig);
95 assert(return_val);
96
97
98 /*** Verification ***/
99
100 /* Deserialize the signature. This will return 0 if the signature can't be parsed correctly. */
101 if (!secp256k1_ecdsa_signature_parse_compact(ctx, &sig, serialized_signature)) {
102 printf("Failed parsing the signature\n");
103 return 1;
104 }
105
106 /* Deserialize the public key. This will return 0 if the public key can't be parsed correctly. */
107 if (!secp256k1_ec_pubkey_parse(ctx, &pubkey, compressed_pubkey, sizeof(compressed_pubkey))) {
108 printf("Failed parsing the public key\n");
109 return 1;
110 }
111
112 /* Verify a signature. This will return 1 if it's valid and 0 if it's not. */
113 is_signature_valid = secp256k1_ecdsa_verify(ctx, &sig, msg_hash, &pubkey);
114
115 printf("Is the signature valid? %s\n", is_signature_valid ? "true" : "false");
116 printf("Secret Key: ");
117 print_hex(seckey, sizeof(seckey));
118 printf("Public Key: ");
119 print_hex(compressed_pubkey, sizeof(compressed_pubkey));
120 printf("Signature: ");
121 print_hex(serialized_signature, sizeof(serialized_signature));
122
123
124 /* This will clear everything from the context and free the memory */
126
127 /* It's best practice to try to clear secrets from memory after using them.
128 * This is done because some bugs can allow an attacker to leak memory, for
129 * example through "out of bounds" array access (see Heartbleed), Or the OS
130 * swapping them to disk. Hence, we overwrite the secret key buffer with zeros.
131 *
132 * TODO: Prevent these writes from being optimized out, as any good compiler
133 * will remove any writes that aren't used. */
134 memset(seckey, 0, sizeof(seckey));
135
136 return 0;
137}
int main(void)
Definition: ecdsa.c:20
secp256k1_context * ctx
Definition: bench_impl.h:13
void printf(const char *fmt, const Args &...args)
Format list of arguments to std::cout, according to the given format string.
Definition: tinyformat.h:1126
SchnorrSig sig
Definition: processor.cpp:523
static int fill_random(unsigned char *data, size_t size)
Definition: random.h:37
static void print_hex(unsigned char *data, size_t size)
Definition: random.h:66
SECP256K1_API void secp256k1_context_destroy(secp256k1_context *ctx) SECP256K1_ARG_NONNULL(1)
Destroy a secp256k1 context object (created in dynamically allocated memory).
Definition: secp256k1.c:157
#define SECP256K1_CONTEXT_SIGN
Definition: secp256k1.h:200
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_context_randomize(secp256k1_context *ctx, const unsigned char *seed32) SECP256K1_ARG_NONNULL(1)
Updates the context randomization to protect against side-channel leakage.
Definition: secp256k1.c:718
SECP256K1_API int secp256k1_ecdsa_signature_parse_compact(const secp256k1_context *ctx, secp256k1_ecdsa_signature *sig, const unsigned char *input64) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3)
Parse an ECDSA signature in compact (64 bytes) format.
Definition: secp256k1.c:346
SECP256K1_API int secp256k1_ec_pubkey_serialize(const secp256k1_context *ctx, unsigned char *output, size_t *outputlen, const secp256k1_pubkey *pubkey, unsigned int flags) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4)
Serialize a pubkey object into a serialized byte sequence.
Definition: secp256k1.c:257
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_seckey_verify(const secp256k1_context *ctx, const unsigned char *seckey) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2)
Verify an ECDSA secret key.
Definition: secp256k1.c:540
SECP256K1_API secp256k1_context * secp256k1_context_create(unsigned int flags) SECP256K1_WARN_UNUSED_RESULT
Create a secp256k1 context object (in dynamically allocated memory).
Definition: secp256k1.c:118
SECP256K1_API int secp256k1_ecdsa_sign(const secp256k1_context *ctx, secp256k1_ecdsa_signature *sig, const unsigned char *msghash32, const unsigned char *seckey, secp256k1_nonce_function noncefp, const void *ndata) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4)
Create an ECDSA signature.
Definition: secp256k1.c:525
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_parse(const secp256k1_context *ctx, secp256k1_pubkey *pubkey, const unsigned char *input, size_t inputlen) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3)
Parse a variable-length public key into the pubkey object.
Definition: secp256k1.c:239
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_create(const secp256k1_context *ctx, secp256k1_pubkey *pubkey, const unsigned char *seckey) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3)
Compute the public key for a secret key.
Definition: secp256k1.c:563
#define SECP256K1_EC_COMPRESSED
Flag to pass to secp256k1_ec_pubkey_serialize.
Definition: secp256k1.h:205
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_verify(const secp256k1_context *ctx, const secp256k1_ecdsa_signature *sig, const unsigned char *msghash32, const secp256k1_pubkey *pubkey) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4)
Verify an ECDSA signature.
Definition: secp256k1.c:411
#define SECP256K1_CONTEXT_VERIFY
Flags to pass to secp256k1_context_create, secp256k1_context_preallocated_size, and secp256k1_context...
Definition: secp256k1.h:199
SECP256K1_API int secp256k1_ecdsa_signature_serialize_compact(const secp256k1_context *ctx, unsigned char *output64, const secp256k1_ecdsa_signature *sig) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3)
Serialize an ECDSA signature in compact (64 byte) format.
Definition: secp256k1.c:379
Opaque data structured that holds a parsed ECDSA signature.
Definition: secp256k1.h:83
Opaque data structure that holds a parsed and valid public key.
Definition: secp256k1.h:70
assert(!tx.IsCoinBase())