Bitcoin ABC 0.30.9
P2P Digital Currency
aserti32d.cpp
Go to the documentation of this file.
1// Copyright (c) 2020 The Bitcoin developers
2// Distributed under the MIT software license, see the accompanying
3// file COPYING or http://www.opensource.org/licenses/mit-license.php.
4#include <pow/aserti32d.h>
5
6#include <chain.h>
7#include <consensus/params.h>
8
9uint32_t GetNextASERTWorkRequired(const CBlockIndex *pindexPrev,
10 const CBlockHeader *pblock,
11 const Consensus::Params &params) noexcept {
13 pindexPrev, pblock, params,
14 pindexPrev->GetAncestor(params.axionHeight));
15}
16
27uint32_t
29 const CBlockHeader *pblock,
30 const Consensus::Params &params,
31 const CBlockIndex *pindexAnchorBlock) noexcept {
32 // This cannot handle the genesis block and early blocks in general.
33 assert(pindexPrev != nullptr);
34
35 // Anchor block is the block on which all ASERT scheduling calculations are
36 // based. It too must exist, and it must have a valid parent.
37 assert(pindexAnchorBlock != nullptr);
38
39 // We make no further assumptions other than the height of the prev block
40 // must be >= that of the anchor block.
41 assert(pindexPrev->nHeight >= pindexAnchorBlock->nHeight);
42
43 const arith_uint256 powLimit = UintToArith256(params.powLimit);
44
45 // Special difficulty rule for testnet
46 // If the new block's timestamp is more than 2* 10 minutes then allow
47 // mining of a min-difficulty block.
48 if (params.fPowAllowMinDifficultyBlocks &&
49 (pblock->GetBlockTime() >
50 pindexPrev->GetBlockTime() + 2 * params.nPowTargetSpacing)) {
51 return UintToArith256(params.powLimit).GetCompact();
52 }
53
54 // For nTimeDiff calculation, the timestamp of the parent to the anchor
55 // block is used, as per the absolute formulation of ASERT. This is somewhat
56 // counterintuitive since it is referred to as the anchor timestamp, but as
57 // per the formula the timestamp of block M-1 must be used if the anchor is
58 // M.
59 assert(pindexPrev->pprev != nullptr);
60 // Note: time difference is to parent of anchor block (or to anchor block
61 // itself iff anchor is genesis).
62 // (according to absolute formulation of ASERT)
63 const auto anchorTime = pindexAnchorBlock->pprev
64 ? pindexAnchorBlock->pprev->GetBlockTime()
65 : pindexAnchorBlock->GetBlockTime();
66 const int64_t nTimeDiff = pindexPrev->GetBlockTime() - anchorTime;
67 // Height difference is from current block to anchor block
68 const int64_t nHeightDiff =
69 pindexPrev->nHeight - pindexAnchorBlock->nHeight;
70 const arith_uint256 refBlockTarget =
71 arith_uint256().SetCompact(pindexAnchorBlock->nBits);
72 // Do the actual target adaptation calculation in separate
73 // CalculateASERT() function
74 arith_uint256 nextTarget =
75 CalculateASERT(refBlockTarget, params.nPowTargetSpacing, nTimeDiff,
76 nHeightDiff, powLimit, params.nDAAHalfLife);
77
78 // CalculateASERT() already clamps to powLimit.
79 return nextTarget.GetCompact();
80}
81
82// ASERT calculation function.
83// Clamps to powLimit.
85 const int64_t nPowTargetSpacing,
86 const int64_t nTimeDiff, const int64_t nHeightDiff,
87 const arith_uint256 &powLimit,
88 const int64_t nHalfLife) noexcept {
89 // Input target must never be zero nor exceed powLimit.
90 assert(refTarget > 0 && refTarget <= powLimit);
91
92 // We need some leading zero bits in powLimit in order to have room to
93 // handle overflows easily. 32 leading zero bits is more than enough.
94 assert((powLimit >> 224) == 0);
95
96 // Height diff should NOT be negative.
97 assert(nHeightDiff >= 0);
98
99 // It will be helpful when reading what follows, to remember that
100 // nextTarget is adapted from anchor block target value.
101
102 // Ultimately, we want to approximate the following ASERT formula, using
103 // only integer (fixed-point) math:
104 // new_target = old_target * 2^((blocks_time - IDEAL_BLOCK_TIME *
105 // (height_diff + 1)) / nHalfLife)
106
107 // First, we'll calculate the exponent:
108 assert(llabs(nTimeDiff - nPowTargetSpacing * nHeightDiff) <
109 (1ll << (63 - 16)));
110 const int64_t exponent =
111 ((nTimeDiff - nPowTargetSpacing * (nHeightDiff + 1)) * 65536) /
112 nHalfLife;
113
114 // Next, we use the 2^x = 2 * 2^(x-1) identity to shift our exponent into
115 // the [0, 1) interval. The truncated exponent tells us how many shifts we
116 // need to do Note1: This needs to be a right shift. Right shift rounds
117 // downward (floored division),
118 // whereas integer division in C++ rounds towards zero (truncated
119 // division).
120 // Note2: This algorithm uses arithmetic shifts of negative numbers. This
121 // is unpecified but very common behavior for C++ compilers before
122 // C++20, and standard with C++20. We must check this behavior e.g.
123 // using static_assert.
124 static_assert(int64_t(-1) >> 1 == int64_t(-1),
125 "ASERT algorithm needs arithmetic shift support");
126
127 // Now we compute an approximated target * 2^(exponent/65536.0)
128
129 // First decompose exponent into 'integer' and 'fractional' parts:
130 int64_t shifts = exponent >> 16;
131 const auto frac = uint16_t(exponent);
132 assert(exponent == (shifts * 65536) + frac);
133
134 // multiply target by 65536 * 2^(fractional part)
135 // 2^x ~= (1 + 0.695502049*x + 0.2262698*x**2 + 0.0782318*x**3) for 0 <= x <
136 // 1 Error versus actual 2^x is less than 0.013%.
137 const uint32_t factor =
138 65536 + ((+195766423245049ull * frac + 971821376ull * frac * frac +
139 5127ull * frac * frac * frac + (1ull << 47)) >>
140 48);
141 // this is always < 2^241 since refTarget < 2^224
142 arith_uint256 nextTarget = refTarget * factor;
143
144 // multiply by 2^(integer part) / 65536
145 shifts -= 16;
146 if (shifts <= 0) {
147 nextTarget >>= -shifts;
148 } else {
149 // Detect overflow that would discard high bits
150 const auto nextTargetShifted = nextTarget << shifts;
151 if ((nextTargetShifted >> shifts) != nextTarget) {
152 // If we had wider integers, the final value of nextTarget would
153 // be >= 2^256 so it would have just ended up as powLimit anyway.
154 nextTarget = powLimit;
155 } else {
156 // Shifting produced no overflow, can assign value
157 nextTarget = nextTargetShifted;
158 }
159 }
160
161 if (nextTarget == 0) {
162 // 0 is not a valid target, but 1 is.
163 nextTarget = arith_uint256(1);
164 } else if (nextTarget > powLimit) {
165 nextTarget = powLimit;
166 }
167
168 // we return from only 1 place for copy elision
169 return nextTarget;
170}
arith_uint256 UintToArith256(const uint256 &a)
arith_uint256 CalculateASERT(const arith_uint256 &refTarget, const int64_t nPowTargetSpacing, const int64_t nTimeDiff, const int64_t nHeightDiff, const arith_uint256 &powLimit, const int64_t nHalfLife) noexcept
Definition: aserti32d.cpp:84
uint32_t GetNextASERTWorkRequired(const CBlockIndex *pindexPrev, const CBlockHeader *pblock, const Consensus::Params &params) noexcept
Definition: aserti32d.cpp:9
Nodes collect new transactions into a block, hash them into a hash tree, and scan through nonce value...
Definition: block.h:23
The block chain is a tree shaped structure starting with the genesis block at the root,...
Definition: blockindex.h:25
256-bit unsigned big integer.
arith_uint256 & SetCompact(uint32_t nCompact, bool *pfNegative=nullptr, bool *pfOverflow=nullptr)
The "compact" format is a representation of a whole number N using an unsigned 32bit number similar t...
uint32_t GetCompact(bool fNegative=false) const
Parameters that influence chain consensus.
Definition: params.h:34
assert(!tx.IsCoinBase())