Bitcoin ABC 0.30.5
P2P Digital Currency
ctaes.c
Go to the documentation of this file.
1/*********************************************************************
2 * Copyright (c) 2016 Pieter Wuille *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
5 **********************************************************************/
6
7/* Constant time, unoptimized, concise, plain C, AES implementation
8 * Based On:
9 * Emilia Kasper and Peter Schwabe, Faster and Timing-Attack Resistant AES-GCM
10 * http://www.iacr.org/archive/ches2009/57470001/57470001.pdf
11 * But using 8 16-bit integers representing a single AES state rather than 8
12 * 128-bit integers representing 8 AES states.
13 */
14
15#include "ctaes.h"
16
17/* Slice variable slice_i contains the i'th bit of the 16 state variables in
18 * this order:
19 * 0 1 2 3
20 * 4 5 6 7
21 * 8 9 10 11
22 * 12 13 14 15
23 */
24
29static void LoadByte(AES_state *s, uint8_t byte, int r, int c) {
30 int i;
31 for (i = 0; i < 8; i++) {
32 s->slice[i] |= (byte & 1) << (r * 4 + c);
33 byte >>= 1;
34 }
35}
36
38static void LoadBytes(AES_state *s, const uint8_t *data16) {
39 int c;
40 for (c = 0; c < 4; c++) {
41 int r;
42 for (r = 0; r < 4; r++) {
43 LoadByte(s, *(data16++), r, c);
44 }
45 }
46}
47
49static void SaveBytes(uint8_t *data16, const AES_state *s) {
50 int c;
51 for (c = 0; c < 4; c++) {
52 int r;
53 for (r = 0; r < 4; r++) {
54 int b;
55 uint8_t v = 0;
56 for (b = 0; b < 8; b++) {
57 v |= ((s->slice[b] >> (r * 4 + c)) & 1) << b;
58 }
59 *(data16++) = v;
60 }
61 }
62}
63
64/* S-box implementation based on the gate logic from:
65 * Joan Boyar and Rene Peralta, A depth-16 circuit for the AES S-box.
66 * https://eprint.iacr.org/2011/332.pdf
67 */
68static void SubBytes(AES_state *s, int inv) {
69 /* Load the bit slices */
70 uint16_t U0 = s->slice[7], U1 = s->slice[6], U2 = s->slice[5],
71 U3 = s->slice[4];
72 uint16_t U4 = s->slice[3], U5 = s->slice[2], U6 = s->slice[1],
73 U7 = s->slice[0];
74
75 uint16_t T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15,
76 T16;
77 uint16_t T17, T18, T19, T20, T21, T22, T23, T24, T25, T26, T27, D;
78 uint16_t M1, M6, M11, M13, M15, M20, M21, M22, M23, M25, M37, M38, M39, M40;
79 uint16_t M41, M42, M43, M44, M45, M46, M47, M48, M49, M50, M51, M52, M53,
80 M54;
81 uint16_t M55, M56, M57, M58, M59, M60, M61, M62, M63;
82
83 if (inv) {
84 uint16_t R5, R13, R17, R18, R19;
85 /* Undo linear postprocessing */
86 T23 = U0 ^ U3;
87 T22 = ~(U1 ^ U3);
88 T2 = ~(U0 ^ U1);
89 T1 = U3 ^ U4;
90 T24 = ~(U4 ^ U7);
91 R5 = U6 ^ U7;
92 T8 = ~(U1 ^ T23);
93 T19 = T22 ^ R5;
94 T9 = ~(U7 ^ T1);
95 T10 = T2 ^ T24;
96 T13 = T2 ^ R5;
97 T3 = T1 ^ R5;
98 T25 = ~(U2 ^ T1);
99 R13 = U1 ^ U6;
100 T17 = ~(U2 ^ T19);
101 T20 = T24 ^ R13;
102 T4 = U4 ^ T8;
103 R17 = ~(U2 ^ U5);
104 R18 = ~(U5 ^ U6);
105 R19 = ~(U2 ^ U4);
106 D = U0 ^ R17;
107 T6 = T22 ^ R17;
108 T16 = R13 ^ R19;
109 T27 = T1 ^ R18;
110 T15 = T10 ^ T27;
111 T14 = T10 ^ R18;
112 T26 = T3 ^ T16;
113 } else {
114 /* Linear preprocessing. */
115 T1 = U0 ^ U3;
116 T2 = U0 ^ U5;
117 T3 = U0 ^ U6;
118 T4 = U3 ^ U5;
119 T5 = U4 ^ U6;
120 T6 = T1 ^ T5;
121 T7 = U1 ^ U2;
122 T8 = U7 ^ T6;
123 T9 = U7 ^ T7;
124 T10 = T6 ^ T7;
125 T11 = U1 ^ U5;
126 T12 = U2 ^ U5;
127 T13 = T3 ^ T4;
128 T14 = T6 ^ T11;
129 T15 = T5 ^ T11;
130 T16 = T5 ^ T12;
131 T17 = T9 ^ T16;
132 T18 = U3 ^ U7;
133 T19 = T7 ^ T18;
134 T20 = T1 ^ T19;
135 T21 = U6 ^ U7;
136 T22 = T7 ^ T21;
137 T23 = T2 ^ T22;
138 T24 = T2 ^ T10;
139 T25 = T20 ^ T17;
140 T26 = T3 ^ T16;
141 T27 = T1 ^ T12;
142 D = U7;
143 }
144
145 /* Non-linear transformation (shared between the forward and backward case)
146 */
147 M1 = T13 & T6;
148 M6 = T3 & T16;
149 M11 = T1 & T15;
150 M13 = (T4 & T27) ^ M11;
151 M15 = (T2 & T10) ^ M11;
152 M20 = T14 ^ M1 ^ (T23 & T8) ^ M13;
153 M21 = (T19 & D) ^ M1 ^ T24 ^ M15;
154 M22 = T26 ^ M6 ^ (T22 & T9) ^ M13;
155 M23 = (T20 & T17) ^ M6 ^ M15 ^ T25;
156 M25 = M22 & M20;
157 M37 = M21 ^ ((M20 ^ M21) & (M23 ^ M25));
158 M38 = M20 ^ M25 ^ (M21 | (M20 & M23));
159 M39 = M23 ^ ((M22 ^ M23) & (M21 ^ M25));
160 M40 = M22 ^ M25 ^ (M23 | (M21 & M22));
161 M41 = M38 ^ M40;
162 M42 = M37 ^ M39;
163 M43 = M37 ^ M38;
164 M44 = M39 ^ M40;
165 M45 = M42 ^ M41;
166 M46 = M44 & T6;
167 M47 = M40 & T8;
168 M48 = M39 & D;
169 M49 = M43 & T16;
170 M50 = M38 & T9;
171 M51 = M37 & T17;
172 M52 = M42 & T15;
173 M53 = M45 & T27;
174 M54 = M41 & T10;
175 M55 = M44 & T13;
176 M56 = M40 & T23;
177 M57 = M39 & T19;
178 M58 = M43 & T3;
179 M59 = M38 & T22;
180 M60 = M37 & T20;
181 M61 = M42 & T1;
182 M62 = M45 & T4;
183 M63 = M41 & T2;
184
185 if (inv) {
186 /* Undo linear preprocessing */
187 uint16_t P0 = M52 ^ M61;
188 uint16_t P1 = M58 ^ M59;
189 uint16_t P2 = M54 ^ M62;
190 uint16_t P3 = M47 ^ M50;
191 uint16_t P4 = M48 ^ M56;
192 uint16_t P5 = M46 ^ M51;
193 uint16_t P6 = M49 ^ M60;
194 uint16_t P7 = P0 ^ P1;
195 uint16_t P8 = M50 ^ M53;
196 uint16_t P9 = M55 ^ M63;
197 uint16_t P10 = M57 ^ P4;
198 uint16_t P11 = P0 ^ P3;
199 uint16_t P12 = M46 ^ M48;
200 uint16_t P13 = M49 ^ M51;
201 uint16_t P14 = M49 ^ M62;
202 uint16_t P15 = M54 ^ M59;
203 uint16_t P16 = M57 ^ M61;
204 uint16_t P17 = M58 ^ P2;
205 uint16_t P18 = M63 ^ P5;
206 uint16_t P19 = P2 ^ P3;
207 uint16_t P20 = P4 ^ P6;
208 uint16_t P22 = P2 ^ P7;
209 uint16_t P23 = P7 ^ P8;
210 uint16_t P24 = P5 ^ P7;
211 uint16_t P25 = P6 ^ P10;
212 uint16_t P26 = P9 ^ P11;
213 uint16_t P27 = P10 ^ P18;
214 uint16_t P28 = P11 ^ P25;
215 uint16_t P29 = P15 ^ P20;
216 s->slice[7] = P13 ^ P22;
217 s->slice[6] = P26 ^ P29;
218 s->slice[5] = P17 ^ P28;
219 s->slice[4] = P12 ^ P22;
220 s->slice[3] = P23 ^ P27;
221 s->slice[2] = P19 ^ P24;
222 s->slice[1] = P14 ^ P23;
223 s->slice[0] = P9 ^ P16;
224 } else {
225 /* Linear postprocessing */
226 uint16_t L0 = M61 ^ M62;
227 uint16_t L1 = M50 ^ M56;
228 uint16_t L2 = M46 ^ M48;
229 uint16_t L3 = M47 ^ M55;
230 uint16_t L4 = M54 ^ M58;
231 uint16_t L5 = M49 ^ M61;
232 uint16_t L6 = M62 ^ L5;
233 uint16_t L7 = M46 ^ L3;
234 uint16_t L8 = M51 ^ M59;
235 uint16_t L9 = M52 ^ M53;
236 uint16_t L10 = M53 ^ L4;
237 uint16_t L11 = M60 ^ L2;
238 uint16_t L12 = M48 ^ M51;
239 uint16_t L13 = M50 ^ L0;
240 uint16_t L14 = M52 ^ M61;
241 uint16_t L15 = M55 ^ L1;
242 uint16_t L16 = M56 ^ L0;
243 uint16_t L17 = M57 ^ L1;
244 uint16_t L18 = M58 ^ L8;
245 uint16_t L19 = M63 ^ L4;
246 uint16_t L20 = L0 ^ L1;
247 uint16_t L21 = L1 ^ L7;
248 uint16_t L22 = L3 ^ L12;
249 uint16_t L23 = L18 ^ L2;
250 uint16_t L24 = L15 ^ L9;
251 uint16_t L25 = L6 ^ L10;
252 uint16_t L26 = L7 ^ L9;
253 uint16_t L27 = L8 ^ L10;
254 uint16_t L28 = L11 ^ L14;
255 uint16_t L29 = L11 ^ L17;
256 s->slice[7] = L6 ^ L24;
257 s->slice[6] = ~(L16 ^ L26);
258 s->slice[5] = ~(L19 ^ L28);
259 s->slice[4] = L6 ^ L21;
260 s->slice[3] = L20 ^ L22;
261 s->slice[2] = L25 ^ L29;
262 s->slice[1] = ~(L13 ^ L27);
263 s->slice[0] = ~(L6 ^ L23);
264 }
265}
266
267#define BIT_RANGE(from, to) (((1 << ((to) - (from))) - 1) << (from))
268
269#define BIT_RANGE_LEFT(x, from, to, shift) \
270 (((x)&BIT_RANGE((from), (to))) << (shift))
271#define BIT_RANGE_RIGHT(x, from, to, shift) \
272 (((x)&BIT_RANGE((from), (to))) >> (shift))
273
274static void ShiftRows(AES_state *s) {
275 int i;
276 for (i = 0; i < 8; i++) {
277 uint16_t v = s->slice[i];
278 s->slice[i] =
279 (v & BIT_RANGE(0, 4)) | BIT_RANGE_LEFT(v, 4, 5, 3) |
280 BIT_RANGE_RIGHT(v, 5, 8, 1) | BIT_RANGE_LEFT(v, 8, 10, 2) |
281 BIT_RANGE_RIGHT(v, 10, 12, 2) | BIT_RANGE_LEFT(v, 12, 15, 1) |
282 BIT_RANGE_RIGHT(v, 15, 16, 3);
283 }
284}
285
286static void InvShiftRows(AES_state *s) {
287 int i;
288 for (i = 0; i < 8; i++) {
289 uint16_t v = s->slice[i];
290 s->slice[i] =
291 (v & BIT_RANGE(0, 4)) | BIT_RANGE_LEFT(v, 4, 7, 1) |
292 BIT_RANGE_RIGHT(v, 7, 8, 3) | BIT_RANGE_LEFT(v, 8, 10, 2) |
293 BIT_RANGE_RIGHT(v, 10, 12, 2) | BIT_RANGE_LEFT(v, 12, 13, 3) |
294 BIT_RANGE_RIGHT(v, 13, 16, 1);
295 }
296}
297
298#define ROT(x, b) (((x) >> ((b)*4)) | ((x) << ((4 - (b)) * 4)))
299
300static void MixColumns(AES_state *s, int inv) {
301 /* The MixColumns transform treats the bytes of the columns of the state as
302 * coefficients of a 3rd degree polynomial over GF(2^8) and multiplies them
303 * by the fixed polynomial a(x) = {03}x^3 + {01}x^2 + {01}x + {02}, modulo
304 * x^4 + {01}.
305 *
306 * In the inverse transform, we multiply by the inverse of a(x),
307 * a^-1(x) = {0b}x^3 + {0d}x^2 + {09}x + {0e}. This is equal to
308 * a(x) * ({04}x^2 + {05}), so we can reuse the forward transform's code
309 * (found in OpenSSL's bsaes-x86_64.pl, attributed to Jussi Kivilinna)
310 *
311 * In the bitsliced representation, a multiplication of every column by x
312 * mod x^4 + 1 is simply a right rotation.
313 */
314
315 /* Shared for both directions is a multiplication by a(x), which can be
316 * rewritten as (x^3 + x^2 + x) + {02}*(x^3 + {01}).
317 *
318 * First compute s into the s? variables, (x^3 + {01}) * s into the s?_01
319 * variables and (x^3 + x^2 + x)*s into the s?_123 variables.
320 */
321 uint16_t s0 = s->slice[0], s1 = s->slice[1], s2 = s->slice[2],
322 s3 = s->slice[3];
323 uint16_t s4 = s->slice[4], s5 = s->slice[5], s6 = s->slice[6],
324 s7 = s->slice[7];
325 uint16_t s0_01 = s0 ^ ROT(s0, 1), s0_123 = ROT(s0_01, 1) ^ ROT(s0, 3);
326 uint16_t s1_01 = s1 ^ ROT(s1, 1), s1_123 = ROT(s1_01, 1) ^ ROT(s1, 3);
327 uint16_t s2_01 = s2 ^ ROT(s2, 1), s2_123 = ROT(s2_01, 1) ^ ROT(s2, 3);
328 uint16_t s3_01 = s3 ^ ROT(s3, 1), s3_123 = ROT(s3_01, 1) ^ ROT(s3, 3);
329 uint16_t s4_01 = s4 ^ ROT(s4, 1), s4_123 = ROT(s4_01, 1) ^ ROT(s4, 3);
330 uint16_t s5_01 = s5 ^ ROT(s5, 1), s5_123 = ROT(s5_01, 1) ^ ROT(s5, 3);
331 uint16_t s6_01 = s6 ^ ROT(s6, 1), s6_123 = ROT(s6_01, 1) ^ ROT(s6, 3);
332 uint16_t s7_01 = s7 ^ ROT(s7, 1), s7_123 = ROT(s7_01, 1) ^ ROT(s7, 3);
333 /* Now compute s = s?_123 + {02} * s?_01. */
334 s->slice[0] = s7_01 ^ s0_123;
335 s->slice[1] = s7_01 ^ s0_01 ^ s1_123;
336 s->slice[2] = s1_01 ^ s2_123;
337 s->slice[3] = s7_01 ^ s2_01 ^ s3_123;
338 s->slice[4] = s7_01 ^ s3_01 ^ s4_123;
339 s->slice[5] = s4_01 ^ s5_123;
340 s->slice[6] = s5_01 ^ s6_123;
341 s->slice[7] = s6_01 ^ s7_123;
342 if (inv) {
343 /* In the reverse direction, we further need to multiply by
344 * {04}x^2 + {05}, which can be written as {04} * (x^2 + {01}) + {01}.
345 *
346 * First compute (x^2 + {01}) * s into the t?_02 variables: */
347 uint16_t t0_02 = s->slice[0] ^ ROT(s->slice[0], 2);
348 uint16_t t1_02 = s->slice[1] ^ ROT(s->slice[1], 2);
349 uint16_t t2_02 = s->slice[2] ^ ROT(s->slice[2], 2);
350 uint16_t t3_02 = s->slice[3] ^ ROT(s->slice[3], 2);
351 uint16_t t4_02 = s->slice[4] ^ ROT(s->slice[4], 2);
352 uint16_t t5_02 = s->slice[5] ^ ROT(s->slice[5], 2);
353 uint16_t t6_02 = s->slice[6] ^ ROT(s->slice[6], 2);
354 uint16_t t7_02 = s->slice[7] ^ ROT(s->slice[7], 2);
355 /* And then update s += {04} * t?_02 */
356 s->slice[0] ^= t6_02;
357 s->slice[1] ^= t6_02 ^ t7_02;
358 s->slice[2] ^= t0_02 ^ t7_02;
359 s->slice[3] ^= t1_02 ^ t6_02;
360 s->slice[4] ^= t2_02 ^ t6_02 ^ t7_02;
361 s->slice[5] ^= t3_02 ^ t7_02;
362 s->slice[6] ^= t4_02;
363 s->slice[7] ^= t5_02;
364 }
365}
366
367static void AddRoundKey(AES_state *s, const AES_state *round) {
368 int b;
369 for (b = 0; b < 8; b++) {
370 s->slice[b] ^= round->slice[b];
371 }
372}
373
375static void GetOneColumn(AES_state *s, const AES_state *a, int c) {
376 int b;
377 for (b = 0; b < 8; b++) {
378 s->slice[b] = (a->slice[b] >> c) & 0x1111;
379 }
380}
381
383static void KeySetupColumnMix(AES_state *s, AES_state *r, const AES_state *a,
384 int c1, int c2) {
385 int b;
386 for (b = 0; b < 8; b++) {
387 r->slice[b] |=
388 ((s->slice[b] ^= ((a->slice[b] >> c2) & 0x1111)) & 0x1111) << c1;
389 }
390}
391
393static void KeySetupTransform(AES_state *s, const AES_state *r) {
394 int b;
395 for (b = 0; b < 8; b++) {
396 s->slice[b] = ((s->slice[b] >> 4) | (s->slice[b] << 12)) ^ r->slice[b];
397 }
398}
399
400/* Multiply the cells in s by x, as polynomials over GF(2) mod x^8 + x^4 + x^3 +
401 * x + 1 */
402static void MultX(AES_state *s) {
403 uint16_t top = s->slice[7];
404 s->slice[7] = s->slice[6];
405 s->slice[6] = s->slice[5];
406 s->slice[5] = s->slice[4];
407 s->slice[4] = s->slice[3] ^ top;
408 s->slice[3] = s->slice[2] ^ top;
409 s->slice[2] = s->slice[1];
410 s->slice[1] = s->slice[0] ^ top;
411 s->slice[0] = top;
412}
413
423static void AES_setup(AES_state *rounds, const uint8_t *key, int nkeywords,
424 int nrounds) {
425 int i;
426
427 /* The one-byte round constant */
428 AES_state rcon = {{1, 0, 0, 0, 0, 0, 0, 0}};
429 /* The number of the word being generated, modulo nkeywords */
430 int pos = 0;
431 /* The column representing the word currently being processed */
432 AES_state column;
433
434 for (i = 0; i < nrounds + 1; i++) {
435 int b;
436 for (b = 0; b < 8; b++) {
437 rounds[i].slice[b] = 0;
438 }
439 }
440
441 /* The first nkeywords round columns are just taken from the key directly.
442 */
443 for (i = 0; i < nkeywords; i++) {
444 int r;
445 for (r = 0; r < 4; r++) {
446 LoadByte(&rounds[i >> 2], *(key++), r, i & 3);
447 }
448 }
449
450 GetOneColumn(&column, &rounds[(nkeywords - 1) >> 2], (nkeywords - 1) & 3);
451
452 for (i = nkeywords; i < 4 * (nrounds + 1); i++) {
453 /* Transform column */
454 if (pos == 0) {
455 SubBytes(&column, 0);
456 KeySetupTransform(&column, &rcon);
457 MultX(&rcon);
458 } else if (nkeywords > 6 && pos == 4) {
459 SubBytes(&column, 0);
460 }
461 if (++pos == nkeywords) pos = 0;
462 KeySetupColumnMix(&column, &rounds[i >> 2],
463 &rounds[(i - nkeywords) >> 2], i & 3,
464 (i - nkeywords) & 3);
465 }
466}
467
468static void AES_encrypt(const AES_state *rounds, int nrounds, uint8_t *cipher16,
469 const uint8_t *plain16) {
470 AES_state s = {{0}};
471 int round;
472
473 LoadBytes(&s, plain16);
474 AddRoundKey(&s, rounds++);
475
476 for (round = 1; round < nrounds; round++) {
477 SubBytes(&s, 0);
478 ShiftRows(&s);
479 MixColumns(&s, 0);
480 AddRoundKey(&s, rounds++);
481 }
482
483 SubBytes(&s, 0);
484 ShiftRows(&s);
485 AddRoundKey(&s, rounds);
486
487 SaveBytes(cipher16, &s);
488}
489
490static void AES_decrypt(const AES_state *rounds, int nrounds, uint8_t *plain16,
491 const uint8_t *cipher16) {
492 /* Most AES decryption implementations use the alternate scheme
493 * (the Equivalent Inverse Cipher), which allows for more code reuse between
494 * the encryption and decryption code, but requires separate setup for both.
495 */
496 AES_state s = {{0}};
497 int round;
498
499 rounds += nrounds;
500
501 LoadBytes(&s, cipher16);
502 AddRoundKey(&s, rounds--);
503
504 for (round = 1; round < nrounds; round++) {
505 InvShiftRows(&s);
506 SubBytes(&s, 1);
507 AddRoundKey(&s, rounds--);
508 MixColumns(&s, 1);
509 }
510
511 InvShiftRows(&s);
512 SubBytes(&s, 1);
513 AddRoundKey(&s, rounds);
514
515 SaveBytes(plain16, &s);
516}
517
518void AES128_init(AES128_ctx *ctx, const uint8_t *key16) {
519 AES_setup(ctx->rk, key16, 4, 10);
520}
521
522void AES128_encrypt(const AES128_ctx *ctx, size_t blocks, uint8_t *cipher16,
523 const uint8_t *plain16) {
524 while (blocks--) {
525 AES_encrypt(ctx->rk, 10, cipher16, plain16);
526 cipher16 += 16;
527 plain16 += 16;
528 }
529}
530
531void AES128_decrypt(const AES128_ctx *ctx, size_t blocks, uint8_t *plain16,
532 const uint8_t *cipher16) {
533 while (blocks--) {
534 AES_decrypt(ctx->rk, 10, plain16, cipher16);
535 cipher16 += 16;
536 plain16 += 16;
537 }
538}
539
540void AES192_init(AES192_ctx *ctx, const uint8_t *key24) {
541 AES_setup(ctx->rk, key24, 6, 12);
542}
543
544void AES192_encrypt(const AES192_ctx *ctx, size_t blocks, uint8_t *cipher16,
545 const uint8_t *plain16) {
546 while (blocks--) {
547 AES_encrypt(ctx->rk, 12, cipher16, plain16);
548 cipher16 += 16;
549 plain16 += 16;
550 }
551}
552
553void AES192_decrypt(const AES192_ctx *ctx, size_t blocks, uint8_t *plain16,
554 const uint8_t *cipher16) {
555 while (blocks--) {
556 AES_decrypt(ctx->rk, 12, plain16, cipher16);
557 cipher16 += 16;
558 plain16 += 16;
559 }
560}
561
562void AES256_init(AES256_ctx *ctx, const uint8_t *key32) {
563 AES_setup(ctx->rk, key32, 8, 14);
564}
565
566void AES256_encrypt(const AES256_ctx *ctx, size_t blocks, uint8_t *cipher16,
567 const uint8_t *plain16) {
568 while (blocks--) {
569 AES_encrypt(ctx->rk, 14, cipher16, plain16);
570 cipher16 += 16;
571 plain16 += 16;
572 }
573}
574
575void AES256_decrypt(const AES256_ctx *ctx, size_t blocks, uint8_t *plain16,
576 const uint8_t *cipher16) {
577 while (blocks--) {
578 AES_decrypt(ctx->rk, 14, plain16, cipher16);
579 cipher16 += 16;
580 plain16 += 16;
581 }
582}
secp256k1_context * ctx
void AES192_decrypt(const AES192_ctx *ctx, size_t blocks, uint8_t *plain16, const uint8_t *cipher16)
Definition: ctaes.c:553
void AES128_decrypt(const AES128_ctx *ctx, size_t blocks, uint8_t *plain16, const uint8_t *cipher16)
Definition: ctaes.c:531
static void SaveBytes(uint8_t *data16, const AES_state *s)
Convert 8 sliced integers into 16 bytes of data.
Definition: ctaes.c:49
static void LoadByte(AES_state *s, uint8_t byte, int r, int c)
Convert a byte to sliced form, storing it corresponding to given row and column in s.
Definition: ctaes.c:29
void AES256_decrypt(const AES256_ctx *ctx, size_t blocks, uint8_t *plain16, const uint8_t *cipher16)
Definition: ctaes.c:575
static void KeySetupColumnMix(AES_state *s, AES_state *r, const AES_state *a, int c1, int c2)
column_c1(r) |= (column_0(s) ^= column_c2(a))
Definition: ctaes.c:383
void AES128_init(AES128_ctx *ctx, const uint8_t *key16)
Definition: ctaes.c:518
static void LoadBytes(AES_state *s, const uint8_t *data16)
Load 16 bytes of data into 8 sliced integers.
Definition: ctaes.c:38
static void InvShiftRows(AES_state *s)
Definition: ctaes.c:286
static void SubBytes(AES_state *s, int inv)
Definition: ctaes.c:68
static void AES_setup(AES_state *rounds, const uint8_t *key, int nkeywords, int nrounds)
Expand the cipher key into the key schedule.
Definition: ctaes.c:423
#define BIT_RANGE_RIGHT(x, from, to, shift)
Definition: ctaes.c:271
void AES256_encrypt(const AES256_ctx *ctx, size_t blocks, uint8_t *cipher16, const uint8_t *plain16)
Definition: ctaes.c:566
void AES192_encrypt(const AES192_ctx *ctx, size_t blocks, uint8_t *cipher16, const uint8_t *plain16)
Definition: ctaes.c:544
static void AES_encrypt(const AES_state *rounds, int nrounds, uint8_t *cipher16, const uint8_t *plain16)
Definition: ctaes.c:468
static void KeySetupTransform(AES_state *s, const AES_state *r)
Rotate the rows in s one position upwards, and xor in r.
Definition: ctaes.c:393
void AES256_init(AES256_ctx *ctx, const uint8_t *key32)
Definition: ctaes.c:562
static void AddRoundKey(AES_state *s, const AES_state *round)
Definition: ctaes.c:367
void AES128_encrypt(const AES128_ctx *ctx, size_t blocks, uint8_t *cipher16, const uint8_t *plain16)
Definition: ctaes.c:522
static void AES_decrypt(const AES_state *rounds, int nrounds, uint8_t *plain16, const uint8_t *cipher16)
Definition: ctaes.c:490
static void ShiftRows(AES_state *s)
Definition: ctaes.c:274
static void MixColumns(AES_state *s, int inv)
Definition: ctaes.c:300
void AES192_init(AES192_ctx *ctx, const uint8_t *key24)
Definition: ctaes.c:540
static void GetOneColumn(AES_state *s, const AES_state *a, int c)
column_0(s) = column_c(a)
Definition: ctaes.c:375
static void MultX(AES_state *s)
Definition: ctaes.c:402
#define BIT_RANGE(from, to)
Definition: ctaes.c:267
#define BIT_RANGE_LEFT(x, from, to, shift)
Definition: ctaes.c:269
#define ROT(x, b)
Definition: ctaes.c:298
uint16_t slice[8]
Definition: ctaes.h:14